Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема Гельмгольца о сохранении вихревых

Теорема Томсона. В 1858 году Гельмгольц в своем знаменитом мемуаре установил дифференциальные уравнения для вектора вихря 2, нз которых он вывел фундаментальные теоремы о сохранении вихревых линий и интенсивностей вихревых трубок. Впоследствии теоремы Гельмгольца были иным путем доказаны В. Томсоном. Метод  [c.147]

Принцип сохранения вихрей (устойчивость вихревой нити) определяется теоремами Гельмгольца  [c.420]


Второй и третий законы Гельмгольца составляют в совокупности принцип сохранения вихревой трубки. Поперечное сечение трубки и угловая скорость могут изменяться, но их произведение (точнее, интеграл по сечению) — интенсивность — всегда остается постоянным. При потенциальности массовых сил вихревая трубка не может ни разорваться, ни исчезнуть. Она может продольно расщепиться на отдельные ветви, что не противоречит указанным теоремам. Из этих законов следует важное свойство интенсификации завихренности в вихревых трубках малого поперечного сечения. Оно состоит в том, что если некоторый участок трубки в процессе движения, скажем, в силу каких-либо причин удвоил свою длину, то из сохранения его объема следует, что площадь поперечного сечения уменьшилась наполовину, а среднее  [c.38]

Теорема Гельмгольца о сохранении вихревых линий. Если принять условие теоремы Томсона, то можно утверждать, что 1) интенсивность вихревой трубки во все время движения остается постоянной, 2) интенсивность, вихревой трубки постоянна вдоль всей ее длины, т. е. циркуляция скорости по любому контуру, охватывающему трубку, постоянна.  [c.47]

Представим себе текучую среду в виде жидкости вихревой структуры, т. е. совокупность вихревых шнуров, движущихся поступательно. Известно, что решение уравнения Эйлера для вихревых течений приводит к теореме Гельмгольца о сохранении вихревых линий. Однако этот вывод находится в противоречии с опытом. На основе уравнения Эйлера нельзя объяснить процесс возникновения и исчезновения вихрей. Решения Навье —Стокса объясняют процесс затухания вихрей, а не процесс их образования. Поэтому возникает проблема обобщения уравнения Навье—Стокса. Впервые на это обратил внимание Н. П. Кастерин [Л.1-18]. Он предложил вихревую модель жидкости.  [c.49]

Пользуясь теоремой Томсона, легко обнаружить знаменитый принцип Гельмгольца сохранения вихрей. Вообразим (фиг. 17) в начальный момент времени некоторую вихрезую нить М и проведем на ее поверхности два бесконечно малых замкнутых контура контур def, обращаемый в точку, не сходя с поверхности нити, и контур ab , охватывающий нить. По прошествии времени t жидкость, заполняющая трубку М, будет заполнять некоторую бесконечно тонкую трубку М точки же жидкости, лежащие на контурах def и ab , будут лежать на контурах d e f и а Ь г.. По теореме Томсона циркуляции скоростн по этим но-ным контурам будут те же, какие были по старым. Так как контур def лежит на поверхности вихря, то (def) = О, а следовательно, и d e f) = О, и так как это рассуждение применимо ко всякому бесконечно малому контуру рассматриваемого вида, то заключаем, что поверхность трубки М есть поверхность нихря, т. е. бесконечно тонкая масса жидкости, заполняющая эту трубку, есть вихревая нить. Далее аЬс) есть двойное напряжение вихревой нити М, а а Ь г ) есть двойное напряжение вихревой нити М так как аЬс) = а Ь с ), то напряжения обоих вихрей одинаковы.  [c.395]


Если бы мы попытались повторить только что приведенное доказательство теоремы Гельмгольца о сохраняемости вихревых линий в идеальной жидкосги в случае вязкой жидкости, то легко убедились бы, что в результате появления дополнительного члена диффузии vV Й жидкий отрезок Ж Ж, представляющий новое положение рассматриваемой вихревой линии, уже не соответствовал бы индивидуальному изменению вихря, харак тери.чую1цему сохранение вихрн, как некоторого индивидуального образования. Завихренность в вязкой жидкости передается смежным жидким частицам и постепенно рассеивается во всем объеме жидкости. В вязкой жидкости вихревые линии разрушаются.  [c.506]

Уравнения гидродинамики и их интегралы. Уравнения гидродинамики в форме Эйлера. Теоремы Бернулли и Лагранжа. Сообщение движения жидкости импульсом. Теорема Томсона. Гельмгольцев принцип сохранения напряжения вихревой нити. Основные принципы динамики, отнесенные к жидкой массе. Определенность гидрокннетической задачи.  [c.322]


Смотреть страницы где упоминается термин Теорема Гельмгольца о сохранении вихревых : [c.184]    [c.189]    [c.41]   
Механика сплошной среды. Т.2 (1970) -- [ c.0 ]



ПОИСК



Вихревые усы

Гельмгольц

Сохранение

Теорема Гельмгольца

Теорема вихревое

Теорема сохранения



© 2025 Mash-xxl.info Реклама на сайте