Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Режимы покрытыми электродами

Проведение этих мероприятий во многом зависит от габаритных размеров и конструктивного оформления сварных заготовок. Для сложных заготовок с элементами больших толщин и размеров при наличии криволинейных швов в различных пространственных положе-йиях можно применять только хорошо свариваемые металлы. Последние сваривают универсальными видами сварки, например ручной дуговой покрытыми электродами или полуавтоматической в защитных газах в широком диапазоне режимов. При сварке не нужны, например, подогрев, затрудненный вследствие больших толщин и размеров элементов, а также высокотемпературная термическая обработка, часто невозможная ввиду отсутствия печей и закалочных ванн соответствующего размера. Для простых малогабаритных узлов возможно применение металлов с пониженной свариваемостью, поскольку при их изготовлении используют самые оптимальные с точки зрения свариваемости виды сварки, например электронно-лучевую или диффузионную в вакууме. При этом легко осуществить все необходимые технологические мероприятия и требуемую термическую или механическую обработку после сварки.  [c.246]


Участки I и II ВАХ соответствуют режимам сварки, применяемым при ручной сварке плавящимся покрытым электродом, а также неплавящимся электродом в среде защитных газов. Механизированная сварка под флюсом соответствует II области и частично захватывает III область при использовании тонких электродных проволок и повышенной плотности тока, сварка плавящимся электродом в защитных газах соответствует III области ВАХ. Для питания дуги с падающей или жесткой ВАХ применяют источники питания с падающей или пологопадающей внешней характеристикой. Для питания дуги с возрастающей ВАХ применяют источники тока с жесткой или возрастающей внешней характеристикой.  [c.57]

Сварной Обработка по режиму 9 дуговая сварка плавящимся покрытым электродом (проволока IN-182) А-286 11  [c.239]

Электроды поставляются в герметизируемой упаковке массой не более приведенной в табл. 41. Каждая упаковка снабжается данными а) наименование или товарный знак предприятия б) условное обозначение электрода в) номер партии и дата изготовления г) область применения электродов д) режимы сварочного тока в зависимости от диаметра электрода и положения сварки пли наплавки е) особые условия выполнения сварки ж) свойства металла шва з) допустимая влажность покрытия электрода и) режим повторного прокаливания электродов.  [c.65]

Химический состав сварочной ванны в первую очередь определяется составом электродной проволоки и основного металла в зависимости от доли его участия в шве. Доля участия основного металла определяется способом и режимом сварки и может изменяться от 0,15 до 0,6 для ручной сварки покрытыми электродами и автоматической под флюсом соответственно. Конечный состав шва устанавливается  [c.227]

При сварке покрытыми электродами перенос электродного металла осуществляется в основном крупными каплями различного размера. Внутри крупных капель могут находиться газы, выделяющиеся при плавлении покрытия и металла электрода. Под действием давления газов крупная капля разрывается, образуются более мелкие капли, брызги и частицы пара. К моменту попадания в ванну капли имеют неодинаковые размеры. При крупнокапельном переносе с короткими замыканиями и без них частота образования капель и их размер не остаются постоянными, что ведет к значительным колебаниям силы тока и напряжения дуги, осложняя получение высококачественного шва. Большую стабильность переноса электродного металла возможно получить лишь при струйном переносе (рис. 48, в). С увеличением силы тока размер капель уменьшается, а число их, образующееся в единицу времени, возрастает. Начиная с некоторой силы тока, которую называют критической, крупнокапельный перенос становится мелкокапельным. Мелкие капли образуют почти сплошную струю жидкого металла, которая переходит в сварочную ванну без коротких замыканий. При струйном переносе сила тяжести мелких капель невелика, что позволяет эффективно использовать этот процесс при сварке во всех пространственных положениях. Струйный перенос характеризуется гораздо меньшими колебаниями силы тока и напряжения, а также значительно меньшим разбрызгиванием, чем крупнокапельный. Однако при чрезмерно высоком значении силы тока стабильный струйный перенос переходит во вращательно-струйный, для которого характерно повышенное разбрызгивание, непостоянство длины дуги, напряжения и силы тока. Таким образом, стабильный струйный перенос существует лишь в некотором диапазоне значений силы тока, о чем и следует помнить при выборе параметров режима.  [c.90]


Ручная дуговая сварка покрытым электродом отличается высокой маневренностью и возможностью выполнения швов во всех пространственных положениях. Качество сварных швов зависит от многих факторов квалификации электросварщика, техники выполнения швов, режима сварки, типа свариваемых конструкций, условий проведения сварочных процессов. Сварку ответственных конструкций, подведомственных государственным надзорным организациям, выполняют высококвалифицированные электросварщики, аттестованные на первый уровень в соответствии с ПБ 3-164-97.  [c.44]

Ручная дуговая сварка покрытым электродом применяется при комбинированном способе выполнения поворотных стыков в сочетании с автоматической сваркой под флюсом (рис. 3.19, /), а также при выполнении многослойных швов неповоротных стыков на трассе. Процесс сварки ведется с использованием электродов с целлюлозным покрытием (марки ВСЦ-4, ВСЦ-4А и др.) в направлении сверху вниз и электродов с основным покрытием (УОНИ-13/55 и др.) в направлении снизу вверх на соответствующих токовых режимах (рис. 3.21 и 3.22, табл. 3.41).  [c.270]

Ручная дуговая сварка стержней арматуры диаметром d= 8...40 мм железобетонных конструкций выполняется преимущественно с использованием покрытых электродов УОНИ-13/55У и подобных диаметром 4 и 5 мм на токовых режимах 220 А (при сварке стержней диаметром 20 мм) и до 330 А (для i/= 40 мм) ванным или многослойным способом (табл. 4.7). Стыковые швы сваривают в основном на стальной остающейся подкладке, фланговые швы в виде одно- и двусторонних - с привариваемыми подкладками-стержнями или без них. Сварочные операции проводятся до температуры - 30 °С.  [c.299]

Многослойные швы соединений отдельных стальных конструкций выполняют с применением одновременно нескольких видов и способов сварки, в том числе механизированной дуговой сварки плавящимся электродом порошковой проволокой, в углекислом газе, ручной дуговой покрытым электродом и автоматической дуговой под флюсом. Так, кольцевые и продольные соединения листовых трубных конструкций с толщиной стенки 8... 10 мм при таком подходе сваривают на режимах в зависимости от положения выполняемого слоя в шве, вида и способа сварки (табл. 4.31).  [c.335]

При сварке покрытыми электродами наблюдаются несколько типов переноса крупно- и мелкокапельный, а также туманообразный. Тип переноса зависит от состава и толщины покрытия, режима сварки, рода и полярности тока.  [c.19]

Коэффициент потерь зависит от способа сварки, типа электрода и параметров режима. На потери значительное влияние оказывает характер переноса электродного металла в сварочной дуге. Так, при сварке покрытыми электродами коэффициент потерь, %, составляет 5... 20, под флюсом — 1... 5, а в защитных газах — 1... 10. В тех случаях, когда в составе электродных покрытий или наполнителей порошковой проволоки содержится значительное количество металлических составляющих, коэффициент Ч отрицателен, поскольку Дн больше Др.  [c.21]

ГОСТ 2246-70 регламентирует химический состав 77 марок сварочной проволоки, используемых в качестве электродной, присадочной, наплавочной и для изготовления покрытых электродов для ручной дуговой сварки (табл. 2.7). Стандарт регламентирует только химический состав и размеры сварочной проволоки, так как механические свойства металла шва зависят от многих других факторов (доли участия основного металла, марки флюса, режима сварки и т.д.). Стандартом предусмотрены диаметры проволок (мм) 0,3 0,5 0,8 1,0 1,2 1,4 1,6 2,0 2,5 3,0 4,0 5,0 6,0 8,0 10,0 12,0. Стандарт распространяется на холоднотянутую сварочную проволоку из низкоуглеродистой, легированной и высоколегированной сталей.  [c.57]

Керамические флюсы. Технология их изготовления сходна с технологией изготовления покрытий электродов. Сухие компоненты шихты замешивают на жидком стекле, полученную массу измельчают путем продавливания ее через сетку на специальном устройстве типа мясорубки, сушат, прокаливают при тех же режимах, что и электродные покрытия, и просеивают для получения частиц зерен определенного размера. Частицы сухой смеси компонентов могут скрепляться спеканием при повышенных температурах без расплавления. Полученные комки гранулируют до необходимого размера (так называемые спеченные флюсы).  [c.63]


Приемы выбора параметров режима сварки покрытыми электродами, в защитных газах, под флюсом.  [c.249]

Тип покрытия электрода диктует необходимость применения постоянного тока обратной полярности (при переменном или постоянном токе прямой полярности дуга неустойчива). Тщательная прокалка электродов, режим которой определяется их маркой, способствует уменьшению вероятности образования в швах пор и вызываемых водородом треш,ин. Некоторые данные о режимах и выборе электродов для ручной дуговой сварки приведены в табл. 9.3 и 9.4, а о свойствах сварных соединений - в табл. 9.5 и на рис. 9.7.  [c.365]

Ориентировочные режимы ручной дуговой сварки покрытыми электродами никелевых сплавов  [c.466]

Естественно, что на долю основного металла в наплавленном слое влияет и интенсивность теплоотвода в наплавляемом изделии, который зависит от теплофизических свойств металла этого изделия, его геометрических размеров (в частности, толщины металла вблизи наплавляемой поверхности), а также наличия искусственного регулирования термического режима наплавляемой детали (сопутствующего наплавке подогрева или интенсификации охлаждения различными приемами). На рис. 14.2 показано влияние на величину Уо толщины наплавляемой детали (алюминиевой бронзы) при наплавке монель-металла покрытыми электродами разного диаметра. При увеличении толщины детали усиливается теплоотвод и уменьшается проплавление основного металла.  [c.522]

При наплавке покрытыми электродами состав наплавленного металла весьма незначительно зависит от режима наплавки (главным образом усиливается выгорание углерода при значительном увеличении силы сварочного тока и напряжения дуги).  [c.530]

Влияние режима при наплавке под флюсом на химический состав наплавленных слоев значительно большее, чем при наплавке покрытыми электродами. Это определяется значительно большим проплавлением основного металла и большим влиянием режима на относительную массу переплавляемого флюса, т.е. количества переплавляемого флюса на I кг расплавляемой электродной проволоки.  [c.531]

Среди части сварщиков все еще распространено мнение о том, будто бы при ручной сварке открытой дугой легирование шва наиболее целесообразно осуществлять через электродное покрытие введением в его состав порошков соответствующих металлов или ферросплавов. При сварке покрытыми электродами или порошковой проволокой, в отличие от сварки под флюсом, соотношение количеств взаимодействующих металла и шлака практически не зависит от режима сварки. Оно определяется толщиной покрытия или сечением порошковой проволоки. При сварке открытой дугой степень легирования металла шва в несколько меньшей степени зависит от режима сварки, чем в предыдущем случае, поэтому такой путь легирования шва здесь действительно кажется более приемлемым. На практике, однако, такая ориентация ведет к серьезным осложнениям из-за необходимости использования шихтовых материалов высокого качества.  [c.62]

Режимы тока при аварке перлитных сталей выбираются в зависимости от марок применяемых электродов. Сварка стыкав трубопроводов из низколегированных сталей электродами с фтористо-кальциевым покрытием (УОНИ-13, ЦЛ-20) выполняется на постоянном токе обратной полярности прн следующих режимах для электродов диаметром 4 мм— 120—170 а, для электродов диаметром 5 жж—170—210 а.  [c.127]

Сварка в нижнем положении производится вертикальным электродом или с наклоном электрода вдоль шва углом вперед или углом назад по отношению к направлению сварки. При сварке углом назад глубина провара несколько увеличивается и уменьшается ширина шва по сравнению со сваркой вертикальным электродом. При сварке углом вперед заметно уменьшается глубина провара и увеличивается ширина шва. При сварке на спуск уменьшается глубина провара и увеличивается ширина шва, а при сварке на подъем — наоборот. Нормальное, характерное для сварки в нижнем положении, формирование шва достигается для ручной сварки покрытыми электродами при угле наклона изделия не более 8—10°. При дуговой сварке значение коэффициента формы шва может изменяться от 0,8 до 20. Все изменения элементов режима, уменьшающие ширину шва и увеличивающие глубину провара, вызывают уменьшение, а увеличивающие ширину шва и уменьшающие глубину провара — увеличение коэффициента формы шва (отношение ширины шва к глубине проплавления).  [c.88]

Газовые поры образуются в случае применения отсыревших электродов, большой скорости сварки и длинной дуги, загрязненных кромок разделки, недостаточной зашиты шва при сварке в защитных газах. Равномерная пористость обычно возникает при постоянно действующих факторах — загрязненность свариваемых кромок (ржавчина, масло, влага), непостоянная толщина покрытия электродов, влажные электроды. Поры могут быть одиночными, в виде цепочки по продольной оси шва или отдельных групп, равномерно распределенных по шву. Одиночные поры образуются за счет действия случайных факторов — колебания напряжения в сети, местного дефекта в покрытии электрода, случайном удлинении дуги. Цепочки пор образуются, когда газообразные продукты проникают в металл по оси шва на всем его протяжении — подварка корня шва произведена некачественными электродами, подсос воздуха через зазор между кромками, сварка ржавого металла. Скопления пор возникают при местных загрязнениях илп при отклонениях от установленного режима сварки при сварке в начале шва, случайных изменениях длины дуги или ее обрыва, при сварке электродами с нарушенным покрытием. Равномерная пористость обычно появляется при постоянно действующих факторах — ржавчина, масло, краска на свариваемых кромках, непостоянная толщина покрытия электродов.  [c.234]

Понятие о режиме сварки. Под режимом сварки понимают совокупность условий протекания процесса сварки. Параметры режима сварки подразделяют на основные и дополнительные. К основным параметрам режима сварки при ручной сварке относят величину, род и полярность тока, диаметр электрода, напряжение, скорость сварки и величину поперечного колебания конца электрода, а к дополнительным—величину вылета электрода, состав и толщину покрытия электрода, начальную температуру основного металла, положение электрода в пространстве (вертикальное, наклонное) и положение изделия в процессе сварки.  [c.102]


Понятие о режиме сварки. Под режимом сварки понимают совокупность условий протекания процесса сварки. Параметры режима сварки подразделяют на основные и дополнительные. К основным параметрам режима сварки при ручной сварке относят величину, род и полярность тока, диаметр электрода, напряжение, скорость сварки и величину поперечного колебания конца электрода, а к дополнительным — величину вылета электрода, состав и толщину покрытия электрода, на-  [c.116]

Пробу Теккен собирают из двух пластин с зазором 2 мм, прихватывают их и затем сваривают с двух сторон связующими швами длиной 60 мм. Контрольный шов сваривают на заданном режиме покрытыми электродами или механизированной сваркой в углекислом газе. В начале и конце контрольного шва оставляют незаваренные участки длиной  [c.16]

Ручную дуговую сварку используют при сварке толщин более 4 мм. Основа покрытий электродов — галлоидные соединения щелочных металлов типа криолит — NajAlF, — 35%, K l — 50%, Na l — 15-%. Сварку проводят на постоянном токе обратной полярности на режимах /св=(45-г-50)й(з, где dg — диаметр электрода 4— 8 мм, напряжение на дуге i/ =30- 34 В. При толщинах более 10 мм для обеспечения расплавления и качественного формирования необходим подогрев до 100—400° С.  [c.135]

Сварной Обработка по режиму 1 дуговая сварка плавящимся покрытым электродом (проволока Е310-16) Кготагс 58 2  [c.239]

Сварные соединения различных типов выполняются ручной дуговой сваркой покрытым электродом и ручной аргонодуговой сваркой непла-вящимся электродом на регламентированных токовых режимах с соблюдением требований основных положений по сборочно-сварочным операциям (табл. 4.3 -4.6).  [c.292]

Керамические флюсы, полученные перемешиванием порошкообразных материалов со связующим веществом, грануляцией и последующей термической обработкой, предназначены для дуговой сварки. Технологии изготовления керамических флюсов и покрытий электродов аналогичны сухие компоненты шихты замешивают на жидком стекле полученную массу измельчают про-давливанием через специальные устройства сушат прокаливают при тех же режимах, что и электродные покрытия, и просеивают для получения частиц определенного размера.  [c.100]

Режимы ручной однопроходной сварки меди покрытыми электродами  [c.270]

Ориентировочные режимы ручной однопроходной сварки мели покрытыми электродами  [c.459]

Трещина хладоломкости в виде поперечной магисгральной трещины, развивающейся с наружной поверхности вглубь металла, поражает металл подва-рочного шва с выходом в ЗТВ соединения и старый шов. Развитию повреждения при ползучести может способствовать процесс дисперсионного охрупчивания металла при повторном нагреве 4.П2, б Транскристатшитный характер повреждения. Развитие повреждения может протекать в две стадии сначала энергично в пределах охруп-ченного металла подварочного шва и затем медленно в пластичном старом шве и ЗТВ соединения (вершина магистральной трещины вязнет в пластичном металле) Технологические причины нарушены регламентированные оптимальные режимы сварки (недостаточный подогрев или его отсутствие) и термической обработки (недоотпуск сварного соединения после ремонта или отсутствие термической обработки) недостаточно просушены покрытые электроды перед сваркой  [c.268]

Учитывая склонность покрытия электродов к поглощению влаги, прокаливание электродов перед сваркой является технологически необходимой операцией, от которой зависит качество сварного соединения. Режим прокаливания и сушки электродов устанавливается в зависимости от типа электродного покрытия и приводится на этикетках к электродам, в паспортах электродов и каталогах. Необходимо тщательно соблюдать рекомендуемые режимы, так как при сварке недосушенными или пересущенными электродами резко ухудшается качество сварного щва. В обоих случаях создаются предпосылки для образования пор в металле из-за влаги в покрытии или ухудшения защиты сварочной ванны вследствие выгорания органических составляюш,их электродного покрытия. По отечественным и зарубежным данным прокаливание электродов в зависимости от их марки, толщины и влажности покрытия, допустимого содержания водорода в наплавленном металле проводится, как правило, в диапазоне температур 80—400°С в течение 20—120 мин. Печи для прокалки электродов должны обеспечивать указанную температуру с необходимым ее регулированием внутри этого интервала. При этом во избежание разрушения покрытия высокотемпературное излучение на электроды должно быть исключено. Печи могут быть стационарными и переносными. Стационарные печи имеют массу от 50 до 1200 кг, в них может быть загружено 20—450 кг электродов, температура в  [c.77]

Ченйю глубины провара. Ширина шва растет с увёЛйчй-нием диаметра электрода. При дуговом процессе напряжение дуги мало влияет на глубину провара, но зато связано прямой зависимостью с шириной шва — с повышением напряжения ширина шва увеличивается. При сварке вручную покрытыми электродами напряжение дуги изменяется в узких пределах (18—22 В), и поэтому не является элементом режима, за счет которого можно изменять ширину шва. Ширина шва в этом случае изменяется в результате поперечного колебания конца электрода. Глубина провара также зависит от амплитуды колебания конца электрода — чем меньше амплитуда, тем больше провар. Повышение скорости сварки до некоторого значения, зависящего от конкретных условий, приводит к увеличению глубины провара. Ширина шва связана со скоростью сварки обратной зависимостью — чем больше скорость, тем меньше ширина. В пределах естественных изменений, связанных со сваркой на морозе или при нагреве металла солнцем (от —60 до -f80° ), начальная температура свариваемого изделия практически не оказывает влияния на глубину провара и ширину шва. Существенные изменения в сторону увеличения наблюдаются при предварительном подогреве до 500 °С,  [c.88]

ОЗЧ-З, ОЗЧ-4, ОЗЖН-1, МНЧ-2 и СТЧ-2. Сварку электродами ОЗЧ-З и МНЧ-2 на постоянном токе обратной полярности производят короткими швами длиной 30—50 мм с проковкой каждого шва и перерывами для охлаждения. При сварке электродами ОЗЧ-З диаметром 2,5—5 мм сварочный ток 60—150 А, а электродами МНЧ-2 диаметром 3—5 мм 90—190 А. При заварке крупных дефектов или наплавке больших объемов металла используют также электроды ОЗЖН-1. Электродами ОЗЧ-З наплавляют первый и последний слой, а промежуточные слои наплавляют поочередно электродами ОЗЖН-1 и ОЗЧ-З. Техника и режимы сварки электродами 03Ч-1 и ОЗЖН-1 и электродами ОЗЧ-З аналогична. Эти электроды рекомендуются для наплавки последнего слоя при заполнении разделки электродами ОЗЧ-З. Назначение электродов СТЧ-2 и МНЧ-2 и техника сварки ими аналогичны. Сварку ведут электродами диаметрам 3—6 мм, сварочный ток соответственно 85—240 А. Некоторые дефекты, расположенные по краям, а также бобышки и платики можно наплавлять полужидкой ванной с принудительным формированием. Используют силу тока в 1,5 раза больше по сравнению с током при послойной сварке. Мелкие дефекты на обрабатываемых поверхностях заваривают электродами с карбидообразующими элементами в покрытии. Наибольшее распространение получили электроды ЦЧ-4. Сварку ведут на минимальном токе электродами диаметром более 4 мм из расчета 23 А на 1 мм диаметра электрода. Ток постоянный, полярность обратная. Кромки рекомендуется облицовывать не более чем в 2 слоя с последующим заполнением объема стальными электродами типа Э42 и Э42А.  [c.133]


Смотреть страницы где упоминается термин Режимы покрытыми электродами : [c.114]    [c.296]    [c.67]    [c.8]    [c.279]    [c.140]    [c.361]    [c.283]    [c.140]    [c.127]   
Технология электрической сварки металлов и сплавов плавлением (0) -- [ c.521 , c.553 ]



ПОИСК



Электрод покрытый



© 2025 Mash-xxl.info Реклама на сайте