Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модуль пластичности динамический

В [273] отмечено, что отношение объемной плотности к "продольному" модулю упругости характеризует меру "хрупкости-пластичности", а их произведение — динамическую стойкость при высокоскоростном нагружении.  [c.151]

Исследования механических свойств металлов различного кристаллического строения показывают, что охлаждение их образцов ниже 273 К приводит к повышению предела прочности при растяжении, росту модуля упругости [И, 12]. При сохранении пластичности у металлов и сплавов в условиях низких температур растет работа разрушения при динамических нагрузках и сопротивление разрушению материалов при циклических нагрузках.  [c.7]


Среднее значение статического коэффициента сухого трения для пары титан—титан [136] равно 0,61, а динамического — 0,47— 0,49 (при скорости 1 см/с). Относительно тонкая естественная окисная пленка на титане легко разрушается при трении за счет высоких удельных нагрузок в точках контакта (на неровностях поверхности), благодаря значительно более высокой пластичности титана, чем у окисной пленки. На локальных участках контакта двух поверхностей происходит явление схватывания. Этому способствует и ряд других свойств титана повышенная упругая деформация из-за более низкого (например, чем у стали) модуля упругости, более низкая теплопроводность и др. Так как титан легко наклепывается при пластической деформации, связи, воз-никающ,ие в местах контакта (холодная сварка), на наклепанном металле более прочны, чем прочность основного металла. Кроме того, благодаря выделению теплоты трущаяся поверхность металла обогащается газами из окружающей среды, что также повышает прочность поверхностного слоя. Поэтому разрушение образовавшихся связей обычно происходит в глубине основного металла и повреждения на трущихся поверхностях из титана носят так называемый глубинный характер со значительным наволакиванием и вырывами металла.  [c.182]

В отличие от коррозионного растрескивания коррозионную усталость /КУ/ можно классифицировать как вид коррозионно-механического разрушения, которое происходит при воздействии на металл циклически меняющихся напряжений в коррозионной среде Ll2-15j. Процесс развития коррозионно-усталостных трещин, имея много общего с развитием трещин при статических нагрузках, вместе с тем обладает рядом особенностей, накладываемых динамическим характером напряжений. Поскольку большинство окислов металлов представляет из себя твердые ионные кристаллы, не пластичны и имеют высокий модуль упругости, вероятность разрушения окисной пассивной пленки при динамических нагрузках весьма высокая. В этих условиях интенсифицируется протекание электрохимических процессов. В зависимости от уровня и частоты приложенных механических напряжений выделяют малоци ло вую к р 0 имную ус галом , характеризуемую высоким уровнем напряжений, близких к пределу текучести или превышающих его и изменяющихся с низкой частотой обычно до 50 циклов/мин.  [c.8]


В последующей части обзора освещены далеко не все аспекты динамики неупругих сред. Она посвящена динамическим задачам пластичности и вязкопластичности. В ней вовсе не затрагиваются вопросы, касающиеся моделирования, неоднородных и анизотропных сред, вязко-упругих сред, явлений разрушения, эффектов сверхвысоких (порядка модуля упругости) давлений, а также эффектов проникания почти не упоминаются экспериментальные исследования.  [c.304]

Помимо перечисленных, так называемых внешних факторов, существует большое число факторов, отражающих реакцию материала на возникшие состояния и протекающие процессы, т. е. то, что принято называть свойствами материалов в широком смысле этого понятия. Свойства материалов и элементов конструкции, в которых они физически воплощены, крайне многообразны а) упругость, характеризуемая модулем упругости Е, и пластическая деформируемость, описываемая диаграммой о = / (е) б) прочность, выражаемая при однократном нагружении пределом текучести, временным сопротивлением, истинным разрушающим напряжением в) пластичность в виде относительного удлинения и поперечного сужения г) упрочняемость материала и пластическая неустойчивость при растяжении д) упругая неустойчивость при сжатии е) сопротивляемость накоплению усталостных повреждений, в том числе у острия трещины ж) прочность при повторных пластических нагружениях з) сопротивление ползучести и) длительная прочность и пластичность при высоких температурах к) старение металла под воздействием деформации, температуры, времеии л) сопротивление началу разрушения в присутствии концентраторов — надрезов, трещин м) сопротивление быстрому динамическому распространению трещин н) стойкость против общей межкристаллитной коррозии, а также против коррозионного растрескивания о) сопротивление замедленным разрушениям п) хладостойкость и др.  [c.256]

По мнению зарубежных специалистов материал прочных корпусов подводных лодок должен обладать высокой уделыной прочностью (отношение предела текучести к удельному весу) высоким модулем нормальной упругости (модулем Юнга) высокой пластичностью основного материала и соединительных элементов (например, сварных швов) высокой усталостной и динамической прочностью коррозионной стойкостью и устойчивостью физических свойств в диапазоне температур, встречающихся при эксплуатации подводной лодки (от —35 до +50°С) технологичностью и возможностью соединения отдельных элементов конструкции по возможности немагнитностью приемлемой стоимостью.  [c.143]


Смотреть страницы где упоминается термин Модуль пластичности динамический : [c.34]    [c.505]    [c.6]    [c.267]    [c.423]    [c.33]   
Краткий курс сопротивления материалов Издание 2 (1977) -- [ c.433 ]



ПОИСК



Модуль динамический

Модуль пластичности



© 2025 Mash-xxl.info Реклама на сайте