Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема Бернулли обобщение

Вопрос этот был исследован также Ламбом ). Он рассматривает обобщенное плоское напряжение ( 94) и берет случай, когда к бесконечной балке приложен ряд сосредоточенных грузов на равных расстояниях друг от друга. Он находит для прогиба выражение, состоящее из трех членов. Первый из них совпадает с тем, который дает теорема Бернулли-Эйлера. Дополнительный прогиб, выражаемый вто-  [c.386]

Траектории системы х = у х) можно назвать линиями тока. Таким образом, теорема 6 — многомерное обобщение классической теоремы Бернулли из гидродинамики идеальной жидкости.  [c.126]


Равенства (4.8) дают нам обобщение второй части теоремы Бернулли функция h + dS/dt постоянна на вихревых многообразиях.  [c.128]

Отметим, что равенства (4.12) представляют локальное обобщение теоремы Бернулли при каждом фиксированном значении 1 функция Н + д8/дЬ постоянна на вихревых многообразиях. Этому наблюдению можно придать глобальный характер, если предположить, что 2-форма 9, = (1ш стационарная (не зависит явно от 1). Если конфигурационное многообразие М односвязно, то найдется такая функция 8 х,1) на М, что ш = ш + (18, где 1-форма ш не зависит от Уравнение Ламба принимает вид  [c.131]

ОБОБЩЕННАЯ ТЕОРЕМА БЕРНУЛЛИ  [c.65]

Патрик Дарси, ирландец, достигший во французской армии чина фельдмаршала, а во французской науке — членства Парижской академии наук, был теоретиком и нрактиком-артиллеристом, изучал и небесную механику— теорию Луны. Существенное место в истории механики занимает его работа Динамическая задача , к рассмотрению которой мы переходим В ней доказывается теорема, дающая обобщение соответствующей теоремы Ньютона при движении системы материальных точек вокруг неподвижного центра сумма произведений вида тгОг, где Oi — площадь, описываемая радиусом-вектором точки с массой rrii, и все О берутся в одной и той же плоскости проекций, пропорциональна времени. Это и есть, собственно, обобщенный закон площадей в интегральной форме, а теорема Д. Бернулли и Эйлера дает тот же закон в дифференциальной форме. В отличие от Эйлера и Бернулли,  [c.126]

В механике жидкости и газа, напротив, был получен ряд важных общих результатов. Так, было введено четкое понятие давления в идеальной жидкости (И. Бернулли, Л. Эйлер), разработаны некоторые общие положения гидравлики идеальной жидкости, в том числе получены уравнение Бернулли (Д. и И. Бернулли, Л. Эйлер) и теорема Борда. Наконец, благодаря главным образом трудам JI. Эйлера были заложены основы гидродинамики идеальной (капельной и сжимаемой) жидкости. Замечательно, что уравнения гидродинамики были построены Эйлером при помощи вполне современного континуального подхода. Тут к его результатам трудно что-либо добавить ив 47 наши дни (конечно, если не касаться термодинамической стороны вопроса). Однако блестящая по стройности построения общая гидродинамика идеальной жидкости оказалась в XVIII в. лигпенной каких-либо приложений, если не считать акустики, опиравшейся в то время на представления И, Ньютона, эквивалентные предположению об изотермичности процесса распространения звука. Опередивйхие более чем на век требования времени, континуальные представления Эйлера в гидродинамике идеальной жидкости нуждались лишь, казалось бы, в небольшом обобщении — последовательном введении касательных напряжений,— для того чтобы обеспечить построение основ всей классической механики сплошной среды. Но, по-видимому, именно опережение Эйлером своей эпохи и практических запросов того времени повлекло за собой то, что толчок к дальнейшему развитию механики сплошной среды дали только через три четверти века феноменологические исследования, основанные на молекулярных представлениях. Чисто континуальный подход, основанный на идеях Эйлера и Коши, был последовательно развит англ [йской школой в 40-х годах и завоевал полное признание только в последней трети XIX в.  [c.47]


Дальнейшее развитие учения о движении жидкости и обобщение законов гидростатики дали возможность членам Российской академии наук в Санкт-Петербурге Леонарду Эйлеру (1707—1783 гг.) и Даниилу Бернулли (1700—1782 гг.) разработать теоретические основы гидравлики и, таким образом, создать прочную теоретическую базу, позволившую выделить гидравлику в отдельную отрасль науки. Д. Бернулли, работая над проблемами математики и механики, посвятил ряд мемуаров вопросам движения и сопротивления жидкости. В 1738 г. им опубликован капитальный труд по гидродинамике, в предисловии к которому автор указал, что его труд полностью принадлежит России, и прежде всего ее Академии наук. В этой работе Бернулли дал метод изучения движения жидкости, ввел понятие гидродинамика и предложил известную теорему о запасе энергии движущейся частицы жидкости. Эта теорема носит теперь имя Д. Бернулли и лежит в основе ряда разделов гидравлики. Л. Эйлер первый дал ясное определение понятия давления жидкости и, пользуясь им, в 1755 г. вывел основные дифференциальные уравнения движения некоторой воображаемой жидкости, лишенной трения, так называемой идеальной жидкости. Эти уравнения впоследствии были названы его именем. На основе учения Л. Эйлера возникла родственная гидравлике наука — гидромеханика, также рассматривающая законы движения жидкостей, но на основе только математического анализа, тогда как гидравлика для изучения отдельных вопросов широко использует и экспериментальный метод.  [c.7]


Смотреть страницы где упоминается термин Теорема Бернулли обобщение : [c.318]    [c.15]   
Теоретическая гидродинамика (1964) -- [ c.236 ]



ПОИСК



Бернулли

Бернулли теорема

Обобщения



© 2025 Mash-xxl.info Реклама на сайте