Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние квантовомеханическое виртуальное

Даже если энергетические состояния изоляторов и вычисляются с помощью достаточно точных методов, здесь имеются определенные сложности, приводящие к возникновению вопросов, касающихся применимости этих расчетов для реальных систем. Прежде всего между электроном и ионами имеется очень сильное кулонов-ское взаимодействие. Поэтому сама решетка в присутствии электрона оказывается деформированной. Здесь мы будем рассматривать эту систему классически. Как можно построить квантовомеханическое ее описание, мы узнаем в гл. IV при обсуждении электрон-фононного взаимодействия. Мы увидим, что такую деформацию можно представить как виртуальное испускание и поглощение квантов решеточных колебаний. Теперь же можно представлять себе, что электрон, находящийся в зоне проводимости хлористого натрия, подтягивает к себе ближайшие ионы натрия и оттесняет ионы хлора. Изменение электростатической энергии линейно по смещениям ионов, в то время как изменение упругой энергии квадратично по ним (поскольку решетка находилась в равновесии до появления в ней лишнего электрона). Таким образом, деформация всегда приводит к выигрышу в энергии.  [c.179]


Итак, квантовомеханический пространственно-временной эволюционный подход позволил нам избавиться от устаревшей проблемы отбора решений и специальных правил обхода полюсов функций Грина. Сила этого подхода в том, что он приводит не к вычислению отклика среды на действие источника, а к решению начальной задачи (задачи Коши), для которой существуют теоремы о существовании и единственности решения. Фейнман в своем первоначальном подходе к построению диаграммной техники для функции Грина постулировал правила обхода ее полюсов. Эти правила оказались абсолютно правильными для задач квантовой теории поля, в которой рассматривается только рассеяние одной, двух (т.е. конечного числа) частиц друг на друге, а все бесконечное число степеней свободы утоплено в ненаблюдаемый в реальных переходах вакуум. Его роль проявляется только в виртуальных переходах и сводится к перенормировке параметров частиц (закона дисперсии, массы, заряда). При рассеянии частиц и волн в макроскопических системах такой подход оказывается недостаточным, поскольку при этом макроскопическое число частиц или волн оказывается в возбужденных ( над вакуумом ) состояниях. Использование правил отбора решений Фейнмана для таких задач в монографиях [41, 42] приводит к ошибочным результатам. В этом случае работают все четыре обхода двух полюсов, то есть четыре функции Грина, и необходимо использовать диаграммную технику Келдыша [39], полностью эквивалентную задаче Коши. Такая ситуация имеет место для любой классической задачи, связанной с нелинейным стохастическим дифференциальным уравнением. Эти задачи эквивалентны квантовым (хороший пример - теория турбулентности [43]). Только для линейных задач с параметрической случайностью , т.е. для линейных уравнений со случайными коэффициентами, из четырех функций Грина остаются две - запаздывающая С и д опережающая. Мы увидим, что энергия рассеянных волн выражается через их произведение. При этом (3 отвечает за эволюцию поля на нижней ветви контура Швингера-Келдыша, а 0 - за эволюцию на верхней ветви (см. рис. 2).  [c.67]

Слабой связи приближение см. Модель почти свободных электронов Сноека эффект 311 Состояние вещества металлическое 56 сверхпроводящее 132 ферромагнитное 123 Состояние квантовомеханическое антисимметричное 57 виртуальное 122 локальное 56, 128 мультиплетность 58 плотность 224, 225 связанное 56, 122 симметричное 57 Спин-орбитальпое взаимодействие 88 Спины 87, 88, 238, 278—280, 302 редкоземельных металлов 238, 253,, 254 электронов 278  [c.327]



Физическое металловедение Вып I (1967) -- [ c.122 ]



ПОИСК



Виртуальное состояние

ЛВС виртуальная

Состояние квантовомеханическое



© 2025 Mash-xxl.info Реклама на сайте