Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Течение жидкости вращательное в газе

ПОСТУПАТЕЛЬНО-ВРАЩАТЕЛЬНОЕ ТЕЧЕНИЕ ЖИДКОСТЕЙ И ГАЗОВ ПО ТРУБАМ  [c.295]

Характерной особенностью физической газовой динамики является изучение течений жидкости и газа при высоких температурах и в широком диапазоне изменения давления. Высокие температуры среды исключают возможность полного количественного и качественного описания современных механических проблем в рамках модели совершенного газа с постоянной теплоемкостью. С ростом температуры в газе начинают происходить такие процессы, как возбуждение вращательных и колебательных степеней свободы, диссоциация (рекомбинация) молекул, возбуждение электронных уровней атомов, ионизация (нейтрализация) атомов, излучение и поглощение лучистой энергии. Течение сильно нагретого газа около стенок приводит к их термическому разрушению. Все эти процессы относятся к области молекулярной и атомной физики, сыгравшей в начале этого века очень важную роль в расширении наших представлений о строении атомов и о законах микромира. Результаты этого раздела физики применялись к изучению электрических разрядов в газах и для решения астрофизических проблем. Сейчас же они образуют научный фундамент многих важных технических задач сегодняшнего дня.  [c.5]


При установившемся течении, частицы жидкости или газа находятся под действием сил давления, обусловленных внешним механическим воздействием и создающих вынужденное движение потока, вязкостных сил, возникающих в результате внутреннего трения и массовых сил, возникающих в результате воздействия силового поля на движущуюся жидкость. Воздействие массовых сил на поток также сопровождается возникновением сил давления. Инерционные массовые силы возникают при криволинейном движении теплоносителя, а также при ускоренном или вращательном движении системы, в которой имеются потоки жидкости. Гравитационные массовые силы возникают в результате воздействия на жидкость ускорения силы тяжести.  [c.342]

Новые направления, без освещения которых невозможен учебник технической термодинамики, возникли и в самой энергетике. Сюда прежде всего относятся развитие парогазовых установок, использование углекислотных циклов, рабочие циклы атомных электростанций. В связи с проблемой прямого превращения тепла в электрическую энергию в магнитогидродинамических генераторах в разделе курса, посвященном течению газов, целесообразно рассматривать, хотя бы в упрощенной форме, течение электропроводящего газа по каналу в магнитном поле. Развитие и использование топливных элементов сказываются вполне естественно на изложении раздела химической термодинамики. Представляется также целесообразным рассмотрение вопросов поступательно-вращательного движения жидкостей и газов по трубам, так как практически довольно часто приходится встречаться с такими потоками (например, в холодильных установках, в теплообменных устройствах нового типа и т. п.).  [c.6]

Известно, что при критических условиях деформации вследствие ротационной неустойчивости происходит переход к турбулентному" течению металла [184]. Для потоков жидкости и газа ротационная неустойчивость проявляется при критических градиентах скоростей поперек линий тока. В работе [185] предложена модель турбулентного течения кристаллов, деформирующихся с участием собственных вращений частиц. Вращательное движение частиц предположительно вызывается силами вязкого трения, подобно тому как это происходит в жидкости. Образующаяся вихревая структура течения, представленная в виде системы вихрей одного масштаба, рассматривается как диссипативная структура. Теоретически показано, что турбулентное течение кристаллов возникает при скоростях пластического сдвига выше критических при переходе от ламинарного течения кристалла к турбулентному происходит существенное снижение величины диссипируемой энергии турбулентность способствует локализации пластической деформации [185].  [c.106]


Напомним свойства вихревых, вращательных и потенциальных течений. Следует различать вихревые течения и вращательные движения жидкостей и газов.  [c.113]

В некоторых случаях используют локальную закрутку потока как в периферийной, так и в центральной областях [196]. Обычно ее совмещают с осевой подачей газа или жидкости в других смежных зонах течения. Выше уже рассматривалось одно из таких устройств с тангенциально-щелевым закручивающим устройством. Наиболее распространенные способы организации закрутки с использованием комбинации вращательного и осевого движения, широко используемые в тепломассообменных аппаратах, показаны на рис. 1.3.  [c.16]

Сравнивая уравнения (52) и (9.Т1), убеждаемся в существовании глубокой аналогии между течением газа по трубе и поступательно-вращательным движением несжимаемой жидкости по трубе. Различие ме.жду этими движениями заключается лишь в том, что в первом случае критической скоростью является скорость звука, а во втором — скорость распространения длинных центробежных волн. При поступательно-вращательном течении в трубе переменного  [c.669]

Сравнивая уравнение (7-54) с (7-45), убеждаемся в существовании глубокой аналогии между течением газа по трубе и поступательно-вращательным движением несжимаемой жидкости по трубе. Различие между этими движениями заключается лишь  [c.299]

Щелевое уплотнение для герметизации вращательного движения (рис. 9.14) представляет цилиндрическую щель с канавками различной формы. Истечение жидкости на большой скорости вызывает вихреобразование в канавках, что обеспечивает гидравлическое сопротивление. При истечении газов через камеры и сужения с резко меняющимися проходными сечениями происходит многократное дросселирование. Щелевые уплотнения имеют широкое применение в компрессорах, турбодетандерах, турбинах. При ламинарном течении применение щелевых уплотнений малоэффективно.  [c.215]

Изложены основы флуктуационной теории П. Пригожина, которая позволяет единообразно формулировать критерии потери устойчивости ( кризиса ) для макроскопических процессов, режимов или структур в областях, далеких от состояния равновесия. Рассмотрены критическая точка жидкости, возникновение пульсаций при одномерном и вращательно-поступательном течениях несжимаемой жидкости, кризис течения газа по трубе, переход ламинарного течения в турбулентное. Для последнего процесса даны оценки числа Рейнольдса в случаях обтекания плоской пластины и течения в цилиндрической трубе, согласующиеся с опытом.  [c.119]

Основные уравнения течения. 9.2. Поступательно-вращательное течение идеальной жидкости. 9.3. Скорость распространения слабых волн. 9.4. Кризис течения и критическая скорость. 9.5. Изоэнтропическое течение газов и паров в каналах. 9.6. Непрерывный переход через скорость звука. 9.7. Неизоэптроппческое течение газа по трубам.  [c.6]


Смотреть страницы где упоминается термин Течение жидкости вращательное в газе : [c.278]    [c.288]    [c.217]    [c.220]    [c.63]    [c.173]    [c.70]   
Механика жидкости (1971) -- [ c.388 , c.391 ]



ПОИСК



Газа течение

Жидкость вращательное

Течение в жидкости

Течение газов

Течение газов и жидкостей



© 2025 Mash-xxl.info Реклама на сайте