Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конструкции из армированных композиций

Был проведен ряд проработок возможных путей использования композиций в других носителях. Хотя эти конкретные проработки могут не найти применения, они показывают преимущества конструкций из композиционных материалов, армированных волокнами, в типичных ракетах.  [c.124]

Структурный подход [1, 2, 23, 24, 28, 35, 37, 38, 57, 64 101, 102, 107, 114-117, 174, 198, 223, 243, 244, 252] позволяет избежать указанного недостатка. Он дает возможность выразить компоненты тензоров упругости и температурной жесткости через механические характеристики элементов композиции, структуру армирования и другие макроскопические параметры. Кроме того, при структурном подходе после решения соответствующей краевой задачи и определения напряженно-деформированного состояния конструкции можно Получить и напряжения в элементах композиции. Указанные обстоятельства позволяют перейти к рассмотрению локальных эффектов в связующем и арматуре, на границе связующего и армирующих элементов, определять характер разрушения и решать вопросы рационального проектирования конструкций из композитных материалов.  [c.13]


I. Методы сварки и пайки предполагают соединение композиционных материалов по металлической матрице. Армирующий наполнитель в сварном или паяном шве или полностью отсутствует (например, в стыковых швах, расположенных поперек направления армирования в волокнистых или слоистых композиционных материалах), или присутствует в уменьшенной объемной доле (при сварке дисперсно-упрочненных материалов проволоками, содержащими дискретную армирующую фазу), или происходит нарушение непрерывности и направленности армирования (например, при диффузионной сварке волокнистых композиций поперек направления армирования). Следовательно, сварной или паяный шов является ослабленным участком конструкции из композиционного материала, что требует учета при конструировании и подготовке места соединения под сварку. В литературе имеются предложения по автономной сварке компонентов композиции для сохранения непрерывности армирования (например, сварка давлением вольфрамовых волокон в композиции вольфрам — медь [10]), однако автономная сварка ВСТЫК волокнистых композиционных материалов требует специальной подготовки кромок, строгого соблюдения шага армирования и пригодна лишь для материалов, армированных металлическими волокнами. Другое предложение состоит в подготовке СТЫКОВЫХ соединений с перекрытием волокон на длине больше критической, однако при этом возникают трудности С заполнением стыка матричным материалом и обеспечением прочной связи по границе волокно—матрица.  [c.500]

Таким образом, предлодаенный подход к построению поверхности начального разрушения в общем случае гибридного ком-поэитного материала позволяет теоретически оценить влияние структуры армирования и механических характеристик элементов композиции на тип начального разрушения и значения параметров внешнего воздействия, соответствующих началу разрушения композитного материала. Кроме того, полученные результаты могут быть непосредственно использованы при расчете на прочность конструкций из армированных материалов, находящихся в условиях однородного плоского напряженного состояния.  [c.29]

При изготовлении конструкций из композитов материал создается одновременно с изделием как одно целое, и условия прочности для таких конструкций долнсны отражать структуру армирования, объемное содержание элементов композиции и т. д. Поэтому при построении критериев разрушения конструкций из армированных материалов целесообразно опираться на структурный подход в сочетании с общими методами исследования на-пряжепно-деформированного состояния.  [c.40]


Был сконструирован ряд систем с использованием компози-ционпых материалов, для которых производственные затраты (материалы и изготовление) были ниже, чем в варианте с металлоконструкциями. Особенно это относится к случаям, когда применение волокнистых композиций позволяет сократить число деталей и инструментов или использовать более простые инструменты, упростить конструкцию или процедуру сборки, уменьшить время контроля. В этих случаях облицовочные панели на сотовой основе, армированные волокнами, зачастую оказываются способными конкурировать со сложной алюминиевой конструкцией из оболочек и стрингеров.  [c.107]

Бортовой В. В., Коломак В. Д. Устойчивость армированных пологих оболочек вращения при ползучести. —В кн. Ill Всесоюз, симпоз. по механике конструкций из композиц. материалов (Ле-нинакан, 25—27 сент. 1979 г.) Тез. докл. Ереван Ин-т механики АН АрмССР, 1979, с. 95.  [c.97]

Наибольшее распространение среди КМ благодаря лучшему комплексу технологических, коррозионных характеристик и достаточно высоким механическим свойствам получил класс конструкционных материалов, называемых боралюминием. Примером могут служить такие композиции как Д20-АД1-В, АД1-АМг6-В и др. Типичными представителями бора-люминиев являются материалы марки ВКА-1, ВКА-1Б. Конструкционные волокнистые композиционные материалы на основе свариваемого коррозионностойкого алюминиевого сплава марки 1561, армированного высокопрочными высокомодульными непрерывными волокнами бора (материал марки ВКА-1 Б) и тонкой стальной проволокой ВНС-9 (материал марки КАС-1), разработаны целенаправленно для использования их в качестве усиливающих элементов (в направлении действия главных напряжений) в высоконагруженньгх корпусных конструкциях из алюминиевого сплава судов [7]. Данные КМ относятся к разряду анизотропных, максимальные прочность и жесткость реализуются в направлении армирования в соответствии с законом аддитивности [7]. Ниже приве-  [c.197]

Это общее описание поверхностей прочности предложено в [100] и широко развито в работах [48, 61, 98, 103, 213, 218, 238, 246, 251, 260] в квадратичной форме и форме высших порядков [14, 212]. Компоненты тензоров / , / т, /артвед,. .. из (4.1), ха-рактериззтющие прочность, определяются из серии экспериментов для каждого конкретного анизотропного материала. При любых последующих изменениях структуры армирования или механических характеристик элементов композиции соответствующую серию экспериментов необходимо проводить заново. Таким образом, при феноменологической формулировке критерия прочности каждый тип анизотропии требует выполнения определенной экспериментальной программы. Поэтому использование подобных критериев прочности не позволяет прогнозировать композитный материал такой структуры, при которой обеспечивалась бы либо максимальная нагрузка начального разрушения, либо максимальная несущая способность конструкции. Кроме того, при феноменологическом подходе невозможно определить и характер разрушения конструкции из композитного материала.  [c.24]

Два бруса-лонжерона, по одному с каждой стороны, являются верхними элементами средней части фюзеляжа. К ним прикреплены петли двери грузового люка и верхние концы шпангоутов фюзеляжа. Установив на внешней обшивке фюзеляжа шляпо-видные боралюминиевые элементы жесткости, можно снизить требования жесткости к лонжерону, сэкономив около 90 кг. Оценки показывают, что еще на 20 кг можно облегчить лонжерон, если половину конструкций выполнить из титана, армированного бором. Это приведет, впрочем, к серьезным трудностям, связанным с разницей температурных коэффициентов линейного расширения у композиций, алюминиевых грузовых дверей и примыкающих алюминиевых конструкций, которая проявляется при возврате орбитального корабля в плотные слои атмосферы.  [c.123]

Предлагаемая советским специалистам книга Углеродные волокна , изданная в 1984 г. в Японии под редакцией проф. С. Симамуры, представляет собой коллективную монографию, подготовленную четырнадцатью ведущими японскими специалистами, и охватывает самые различные аспекты сравнительно молодой, но весьма перспективной области современного материаловедения. В книге рассматриваются вопросы получения углеродных волокон и армированных ими композиционных материалов, структура и свойства волокон и полимерных связующих для углепластиков, характеристики композиций на основе полимерных и металлических матриц, технология изготовления из низ элементов конструкций, а также применение этих материалов в самых разнообразных изделиях - от спортивного снаряжения до космических аппаратов.  [c.5]


Волокна бора используются для армирования большего числа металлических сплавов, включая магний и свинец. Сообщается об исследованиях по изготовлению композиций магний — бор методом непрерывного литья. Композиции с большим объемным содержанием компонентов были получены с высокой прочностью я без повреждения волокон. Метод заключается в непрерывной пропитке жгутов, состоящих из 15—40 волокон, с последующим диффузионным соединением или соединением путем переплава для получения конструкционной формы. Высокопрочные композиционные материалы также изготовляют путем плазменного напыления магния на намотанные на барабан слои волокон бора с последующим диффузионным соединением с помощью горячего прессования, как сообщалось Абрамсом и др. [1]. Эта композиционная система обладает хорошим отношением модуля и прочности к плотности и должна найти широкое применение в легких высоконагруженных конструкциях.  [c.46]

Из раздела IV следует, что поиски приемлемой композиции на основе никеля, армированного сапфировыми волокнами, не были особенно плодотворными. Хотя авторы не могут согласиться с тем, что эта система бесперспективна, путь к реализации свойств, предсказываемых правилом смеси, изобилует трудностями. Многие из них, безусловно, являются общими для всех композиций с металлической матрицей, армированной хрупкими керамическими волокнами и тем не менее несколько представляющих практический интерес материалов этого класса уже изготовляются и имеют свойства, которые внушают оптимизм в отношении перспектив использования и других систем, включая систему Ni—AI2O3. Например, в настоящее время уже широко используются в аэрокосмических конструкциях боралюминиевые композиции, а композиции титан — бор и алюминий — углерод исследуются с точки зрения возможности применения в этих же областях.  [c.232]

На измерении импеданса при отражении ультразвукового импульса от поверхности основан метод контроля когезионной прочности (т. е. прочности самого клея) Клеевых соединений. Установлена корреляция прочности склеивания с характеристическим импедансом клея. Последний оценивают по величине коэффициента отражения на границе раздела обшивка — клей или (реже) клей — внутренний элемент конструкции. Коэффициент отражения определяют по амплитуде первого полупериода эхо-сигнала от границы раздела. Для контроля используют эхо-дефектоскоп, работающий недетектиро-ванными импульсами с несущими частотами 4 МГц и выше. Метод позволяет проверять соединения металлов, армированных и неармированных пластмасс и дру< тих материалов, хорошо проводящих ультразвук, с внутренними элементами из любых материалов. В 95% случаев погрешность не превосходит 0,2—0,4 нормальной когезионной прочности. При жестком регламентировании состава клеевых композиций точность увеличивается.  [c.231]


Смотреть страницы где упоминается термин Конструкции из армированных композиций : [c.35]    [c.160]    [c.25]    [c.3]    [c.155]    [c.174]   
Справочник по композиционным материалам Книга 2 (1988) -- [ c.182 ]



ПОИСК



Армирование

Композиция



© 2025 Mash-xxl.info Реклама на сайте