Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплоперепад располагаемый

Теплопередача 148, 149, 169, 174 Теплоперепад располагаемый удельный 86  [c.255]

Теорема Жуковского 349 и д., 353, 355, 357, 360 Теплоёмкость 11 Теплоперепад располагаемый 532  [c.736]

Величину /i —/i2 называют располагаемым теплоперепадом.  [c.45]

Т. е. располагаемая работа при адиабатном расширении равна располагаемому теплоперепаду.  [c.46]

Если пар предварительно дросселируется а задвижке, например, до 1 МПа, то состояние его перед двигателем характеризуется уже точкой Расширение пара в двигателе пойдет при этом по прямой / -2. В результате техническая работа двигателя, изображаемая отрезком / -2, уменьшается. Чем сильнее дросселируется пар, тем большая доля располагаемого теплоперепада, изображаемого отрезком /-2, безвозвратно теряется. При дросселировании до давления р2, равного в нашем случае 0,1 МПа (точка /"), пар вовсе теряет возможность совершить работу, ибо до двигателя он имеет такое же давление, как и после него. Дросселирование иногда используют для регулирования (уменьшения) мощности тепловых двигателей. Конечно, такое регулирование неэкономично, так как часть работы безвозвратно теряется, но оно иногда применяется вследствие своей простоты.  [c.52]


Из изложенного ясно, что эксергия, т. е. максимальная работа, которую можно получить от рабочего тела в потоке, как правило, не равна располагаемому теплоперепаду Л — Ло. В некоторых случаях, как в изображенном на рис. 5.12 примере, она оказывается больше располагаемого теплоперепада за счет теплоты, отбираемой рабочим телом от окружающей среды. В других случаях (когда so<5i) она будет меньше, чем h,—ho.  [c.55]

В реальных условиях в результате трения и завихрений при течении потока часть кинетической энергии направленного движения молекул превращается в энергию неупорядоченного движения молекул, что повышает энтальпию рабочего тела за соплом, уменьшает располагаемый теплоперепад и скорость потока  [c.168]

Пар поступает в одно или несколько сопл 4, приобретает в них значительную скорость и направляется на рабочие лопатки 5. Отработанный пар удаляется через выхлопной патрубок 8. Ротор турбины, состоящий из диска 3, закрепленных на нем лопаток и вала /, заключен в корпус 6. В месте прохода вала через корпус установлены переднее 2 и заднее 7 лабиринтовые уплотнения, предотвращающие утечки пара. Так как весь располагаемый теплоперепад срабатывается в одной ступени, то скорости потока в соплах оказываются большими. При расширении, например, перегретого пара, имеющего параметры 1 МПа  [c.168]

Величину Яд принято называть располагаемым теплоперепадом.  [c.92]

На рис. 10.3 показан располагаемый теплоперепад — I j  [c.129]

Отсюда следует, что располагаемая работа при адиабатном расширении равна разности энтальпий рабочего тела в начале и конце процесса. Эта разность энтальпий называется располагаемым теплоперепадом и обозначается h .  [c.107]

Вследствие необратимых потерь в реальном процессе истечения при том же перепаде давлений ро—р2 действительный теплоперепад меньше располагаемого теплоперепада Д/1<Д/го. Часть кинетической энергии потока затрачивается на преодоление сил трения, переходит в теплоту, воспринимаемую газом или паром, что в итоге приводит к уменьшению действительной скорости истечения по сравнению с теоретической.  [c.109]

Величина (1—фс ) называется коэффициентом потерь энергии в сопле и равна отношению необратимых потерь энергии (работы) к располагаемому теплоперепаду  [c.110]

Степенью реактивности ступени называется отношение располагаемого теплоперепада на рабочих лопатках Аг к располагаемому теплоперепаду ступени ho = h +h2 (где А,—располагаемый теплоперепад в соплах), т. е.  [c.105]

Задача 3.2. В реактивной ступени пар с начальным давлением Рй=, 9 МПа и температурой /о = 380°С расширяется до />2=1,3 МПа. Определить степень реактивности ступени, если располагаемый теплоперепад на рабочих лопатках /12 = 48 кДж/кг.  [c.107]


Задача 3.3. Определить степень реактивности ступени, если располагаемый теплоперепад в ступени Ло=120 кДж/кг, скоростной коэффициент сопла ф = 0,96 и действительная скорость истечения пара из сопл С] = 335 м/с.  [c.107]

Кпд ступеней турбины. Потери тепловой энергии в соплах, на лопатках и с выходной абсолютной скоростью в ступени турбины оценивают относительным кпд на лопатках %ц, который представляет собой отношение механической работы L 1 кг пара на лопатках ступени к располагаемому теплоперепаду Ло в ступени, т. е.  [c.117]

Задача 3.32. Определить относительный кпд на лопатках в активной ступени, если располагаемый теплоперепад в ступени Ао=160 кДж/кг, скоростной коэффициент сопла ф = 0,96, скоростной коэффициент лопаток i = 0,88, угол наклона сопла к плоскости диска ai=16°, окружная скорость на середине лопатки м=188 м/с и угол выхода пара из рабочей лопатки 2 = .-Г20.  [c.120]

Задача 3.36. Определить потери тепловой энергии на трение, вентиляцию и утечки в активной ступени, если располагаемый теплоперепад в ступени /г,) = 100 кДж/кг, давление р=1 МПа и температура /=300°С пара в камере, где вращается диск, средний диаметр ступени d=, м, частота вращения вала турбины и = 50 об/с, выходная высота рабочих лопаток 4 = 0,03 м, степень парциальности впуска пара е=0,4, коэффициент Я =1,1, расход пара Л/=25 кг/с и расход пара на утечки Myj = 0,8 кг/с.  [c.123]

Задача 3.37. Определить относительный внутренний кпд реактивной ступени, если располагаемый теплоперепад в ступени Ao=100 кДж/кг, скоростной коэффициент сопла ф = 0,94, скоростной коэффициент лопаток ф = угол наклона сопла к плоскости диска ai = 18°, средний диаметр ступени /=0,95 м, частота вращения вала турбины и = 3600 об/мин, угол выхода пара из рабочей лопатки 2 = 20 20, степень реактивности ступени р = 0,45, расход пара М=22 кг/с и расход пара на утечки Му,= = 0,4 кг/с. Потерями теплоты на трение и вентиляцию пренебречь.  [c.123]

Задача 3.38. Определить относительный внутренний кпд активной ступени, если располагаемый теплоперепад в ступени /io=80 кДж/кг, скоростной коэффициент сопла (р = 0,95, скоростной коэффициент лопаток i/ = 0,88, угол наклона сопла к плоскости диска а] = 14°, угол выхода пара из рабочей лопатки 2 = 23°, средний диаметр ступени /=1,1 м, частота вращения вала турбины и = 3000 об/мин, отношение окружной скорости на середине лопатки к действительной скорости истечения пара из сопл t / ] = 0,455, выходная высота рабочих лопаток /г = 0,03 м,  [c.123]

Задача 3.39. Определить относительный внутренний кпд активной ступени, если располагаемый теплоперепад в ступени 124  [c.124]

Кпд турбины. Потери тепловой энергии внутри паровой турбины оцениваются относительным внутренним кпд турбины, который представляет собой отношение использованного теплоперепада Hi к располагаемому теплоперепаду в турбине Hq, т. е.  [c.131]

Коэффициент возврата теплоты турбины. Коэффициент возврата теплоты а характеризует относительное увеличение располагаемого теплоперепада за счет частичного возврата тепловых потерь и определяется по формуле  [c.132]

Задача 3.67. Турбина высокого давления с теплофикационным отбором при давлении />п = 0,14 МПа работает при начальных параметрах пара />о = 8 МПа, о = 500 С и имеет на одном из режимов работы относительный внутренний кпд части высокого давления o, = 0,8. При изменении пропуска пара через турбину при постоянном давлении отбора относительный внутренний кпд части высокого давления уменьшился до >/ о, = 0,74. На сколько изменился располагаемый теплоперепад части низкого давления, если давление пара в конденсаторе осталось постоянным и равным Pi=6 10 Па  [c.140]


Характеристики рабочего процесса турбинной ступени. Располагаемый теплоперепад в ступени (кДж/кг) турбины определяется по формуле  [c.146]

Задача 4.2. Определить относительные скорости входа газа на лопатки и выхода газа из канала между рабочими лопатками в активной ступени, если известны располагаемый теплоперепад в ступени турбины Ао = 200 кДж/кг, скоростной коэффициент сопла ф = 0,96, угол наклона сопла к плоскости диска а, = 16°, средний диаметр ступени d=0,9 м, частота вращения вала турбины п=3000 об/мин и скоростной коэффициент лопаток iA = 0,87.  [c.148]

Задача 4.6. Определить работу 1 кг газа на лопатках в реактивной ступени, если располагаемый теплоперепад Ao=110 кДж/кг, скоростной коэффициент сопла ф = 0,965, скоростной коэффициент лопаток ф = 0, 6, угол наклона сопла к плоскости диска ai = 16°, отношение окружной скорости на середине лопатки к действительной скорости истечения газа из сопл u/ i = 0,44, угол" выхода газа из рабочей лопатки равен углу входа газа на рабочую лопатку 2 = 1 = 22° и степень реактивности ступени р = 0,5.  [c.150]

Решение Располагаемый теплоперепад в ступени определяем по формуле (4.1)  [c.151]

Задача 4.15. Определить секундный расход газа и механический кпд турбины, если эффективная мощность турбины iVe=6400 кВт, располагаемый теплоперепад в турбине Яо = 276 кДж/кг, относительный эффективный кпд турбины /о.е = 0,79 и относительный внутренний кпд турбины  [c.153]

Задача 4.21. Определить эффективную мощность и удельный расход воздуха ГТУ, если располагаемый теплоперепад в турбине Ло = 230 кДж/кг, расход газа Gr=120 кг/с, расход воздуха Gg=120 кг/с, относительный эффективный кпд турбины /о.с=0,75, механический кпд установки >/J[7 =0,88 и эффективная мощность привода компрессора iV =8700 кВт.  [c.158]

Следует также обратить внимание на то, что при дросселировании водяного пара удельный располагаемый теплоперепад (на рис. 5.12 характеризуется отрезками 1-Г до дросселирования и 2-2 после него) уменьшается, вследствие чего работоспособность потока падает.  [c.94]

Для этого на i—s диаграмме (рис. 14-15) определяется начальная точка 1, соответствующая заданным начальным параметрам пара pi и ti перед турбиной. Из этой точки проводится прямая процесса адиабатического расширения до заданного конечного давления р2- Длина отрезка h=ii—12 определяет удельную работу пара в турбине. Величину h называют обычно располагаемым теплопадением или теплоперепадом. Подставив величину h в уравнение (14-9), получим следующее выражение для т]г (без учета работы питательного насоса).  [c.433]

Таким образом, отношение скоростей (ы/сф)"опт Для двух- и трехвенечных ступеней соответственно в два и три раза меньше, чем для одновенечной. Следовательно, применение многовенечных ступеней по сравнению с одновенечными позволяет при заданной окружной скорости лопаток перерабатывать большие теплоперепады. Располагаемый теплоперепад двух- и трехвенеч-  [c.47]

При Q = 0 (чисто активная ступень) весь располагаемый теплопереггад, а следовательно, и перепад давлении срабатывается в сопловом аппарате, превращаясь в скоростной напор. Именно такая ступень рассмотрена на рис. 20.2, 20.3. При Q=1 (чисто реактивная ступень) весь располагаемый теплоперепад срабатывался бы на рабочих лопатках.  [c.170]

Задача 3.25. Определить работу 1 кг пара на лопатках в реактивной ступени, если располагаемый теплоперепад в ступени /io = 256 кДж/кг, скоростной коэффициент сопла ф = 0,95, скоростной коэффициент лопаток i/ = 0,88, угол наклона сопла к плоскости диска а, = 16°, средний диаметр ступени d=l м, частота вращения вала турбины и = 3600 об/мин, угол выхода пара из рабочей лопатки 2 = 20° и степень реактивности ступегш р = 0,5.  [c.115]

Задача 3.26. Определить работу 1 кг пара на лопатках в реактивной ступени, если располагаемый теплоперепад в ступени Ао=240 кДж/кг, скоростной коэффициент сопла ф = 0,96, скоростной коэффициент лопаток ф = 0,9, угол наклона сопла к плоскости диска 1 = 16°, отношение окружной скорости на середине лопатки к действительной скорости истечения пара из сопл uj i —0,44, относительная скорость входа пара на лопатки Wi=260 м/с, угол выхода пара из рабочей лопатки 2 = 1 —2° и степень реактивности ступени р = 0,48.  [c.116]

Потери теплоты в ступени оцениваются относительным внутренним кпд ступени г)", который представляет собой отношение использованного теплоперепада й, к располагаемому теплопере-паду в ступени ha, т. е.  [c.118]

Задача 3.52. Для турбины с начальными параметрами пара Ро — 9 МПа, /о = 500°С и противодавлением р2=1,5 МПа определить коэффициент возврата теплоты, если использованный теп-лоперепад регулирующей ступени /г = 102 кДж/кг и относительный внутренний кпд регулирующей ступени >/" = 0,68. Турбина имеет шесть нерегулируемых ступеней с одинаковыми располагаемыми теплоперепадами ha = 62 кДж/кг.  [c.135]

Задача 4.14. Определить относительные эффективный и внутренний кпд турбины, если эффективная мощность турбины iVe=7000 кВт, расход газа Gi, = 28,5 кг/с, располагаемый теплопе-репад в турбине Яо=295 кДж/кг и использованный теплоперепад Я, = 253 кДж/кг.  [c.153]


Смотреть страницы где упоминается термин Теплоперепад располагаемый : [c.46]    [c.168]    [c.177]    [c.546]    [c.268]    [c.453]   
Теплофикационные паровые турбины и турбоустановки (2002) -- [ c.24 ]

Прикладная газовая динамика Издание 2 (1953) -- [ c.532 ]

Турбины тепловых и атомных электрических станций Издание 2 (2001) -- [ c.15 , c.16 , c.44 , c.140 ]



ПОИСК



Относительный располагаемый теплоперепад пара

Располагаемый теплоперепад пара в турбине

Располагаемый теплоперепад турбины

Теплоперепад располагаемый относительный



© 2025 Mash-xxl.info Реклама на сайте