Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дефектоскопия проникающими веществами

Ультрафиолетовая дефектоскопия — неразрушающий контроль качества, в частности контроль специальными проникающими веществами, имеет две родственные разновидности капиллярную дефектоскопию и течеискание. Эти разновидности в своем основном арсенале методов н средств получения первичной информации имеют ряд способов, основанных на применении яркостных, цветных, люминесцентных и люминесцентно-цветных способов, включающих большую часть методов и средств люминесцентного анализа с использованием УФ-излучения, которое находит также применение в магнитно-люминесцентной разновидности неразрушающего контроля.  [c.175]


Обнаружение течи. Течь — это канал или пористый участок отливки или ее элементов, нарушающий их герметичность. Как правило, малые характерные размеры течей исключают возможность их визуального наблюдения или обнаружения всеми другими методами дефектоскопии, кроме методов проникающих веществ. При течеискании, особенно у крупных отливок, предварительно выявляют факт негерметичности, затем выделяют негерметичный участок (локализация течей), а затем уже выявляют места течей.  [c.499]

Дефектоскопами называются приборы неразрушающего контроля, предназначенные для обнаружения в изделиях дефектов, нарушающих сплошность (трещины, раковины, расслоения и т.п.). В дефектоскопии чаще других используются акустический, проникающими веществами, магнитный, радиационный и вихретоковый виды контроля.  [c.376]

Течь - это канал или пористый участок изделия или его элементов, нарушающих их герметичность. Как правило, малые характерные размеры течей исключают возможность их визуального наблюдения или обнаружения всеми другими методами дефектоскопии, кроме методов проникающих веществ. Малые размеры сечений и неоднородность их по длине произвольно извилистых каналов не позволяют характеризовать течи геометрическими размерами. Поэтому величины течей принято определять потоками проникающих через них веществ. Соответственно, в величинах потоков выражаются порог чувствительности аппаратуры (наименьший расход пробного вещества или наименьшее изменение давления, регистрируемые течеискателем) так же, как и диапазон выявляемых течей, и норма герметичности (наибольший суммарный расход вещества через течи герметизированного изделия, обеспечивающий его работоспособное состояние и установленный нормативно-технической документацией).  [c.547]

Течь - это канал или пористый участок изделия или его элементов, нарушающих их герметичность. Как правило, малые характерные размеры течей исключают возможность их визуального наблюдения или обнаружения всеми другими методами дефектоскопии, кроме методов проникающих веществ. Малые размеры сечений и неоднородность их по длине произвольно извилистых каналов не позволяют характеризовать течи геометрическими размерами. Поэтому величину течей принято определять потоками проникающих через них веществ. Соответственно, в величине потоков выражается порог чувствительности аппаратуры и методов, так же как и диапазон выявленных течей.  [c.348]

Люминесцирующие вещества для дефектоскопии должны обладать хорошей проникающей способностью внутрь дефектов и инертностью в отношении химического взаимодействия с испытываемым металлом. В связи с этим при люминесцентном анализе чаще пользуются не сухими люминесцирующими порошками, а их жидкими растворами. Лучше применять растворы, обладающие небольшой вязкостью и достаточной смачиваемостью.  [c.84]


Капиллярная дефектоскопия основана на выявлении невидимых или слабовидимых глазом поверхностных дефектов с помощью проникающих жидкостей. Помимо капиллярной к дефектоскопии проникающими веществами относится течеискание, предназначенное для выявления сквозных дефектов.  [c.377]

В настоящее время для обнаружения и идентификации дефектов используется широкий спектр методов неразрушающего контроля (НК). Современная классификация методов НК включает девять видов контроля электрический, магнитный, вихретоковый, радиоволновой, тепловой, визу-ально-измерительный, радиационный, акустический и проникающими веществами. По причинам конструктивного и эксплуатационного характера при диагностировании сварных аппаратов используются, в основном, следующие методы НК магнитный контроль (ГОСТ 24450), капиллярный контроль (ГОСТ 24522), акустический контроль (ультразвуковая дефектоскопия ГОСТ 14782 и толщинометрия, метод акустической эмиссии), радиационные методы (ГОСТ 7512 рентгеновский, гамма- и бета-излучением). При этом следует отметить, что радиационные методы применяются преимущественно на стадии изготовления аппаратов, а использование магнитного метода носит эпизодический харак гер. Руководящие документы по оценке 1екущего состояния  [c.175]

Капиллярный метод дефектоскопии позволяет обнаружить микроскопи-lie Kne поверхностные дефекты на изделиях практически из любых конструкционных материалов. Разнообразие дефектоскопируемых изделий и различные требования к их надежности требуют дефектоскопических средств различной чувствительности. В настоящее время разработан значительный ассортимент материалов, применяемых при капиллярном неразрушающем контроле и предназначенных для пропитки, нейтрализации или удаления избытка проникающего вещества с поверхности и проявления его остатков с целью получения первичной информации о наличии несплошности в объекте контроля. Они широко используются предприятиями различных отраслей промышленности.  [c.151]

Дефектоскопы, использующие проникающие вещества для неразрушающего контроля, классифицируют по типу проникающей в дефект жидкости (пенетранта) и способу регистрации индикаторного рисунка этого дефекта. Различают три основных метода капиллярной дефектоскопии цветной, люминесцентный и люминесцент-но-цветной. При цветной дефектоскопии применяют проникающие жидкости, которые после нанесения проявителя образуют красный индикаторный рисунок дефекта, хорошо видимый на белом фоне проявителя. Люминесцентная дефектоскопия основана на свойстве проникающей жидкости люминесцировать под воздействием ультрафиолетовых лучей. При люминесцентно-цветной дефектоскопии индикаторные рисунки не только люминесцируют в ультрафиолетовых лучах, но и имеют окраску. Основными объектами капиллярной дефектоскопии являются изделия из неферромагнитных конструкционных материалов лопатки турбин, детали корпусов энергооборудования, сварные швы, а также изделия из диэлектрических материалов, например из керамики. В настоящее время наиболее широко применяется следующая дефектоскопическая аппаратура люминесцентные дефектоскопы ЛДА-3 и ЛД-4, ультрафиолетовые установки КД-20Л и КД-21Л, установка контроля лопаток УКЛ-1, стационарная люминесцентная дефектоскопическая установка Де-фектолюмоскоп СЛДУ-М и др.  [c.377]

К неразрушающим методам контроля относят визуальный осмотр, простукивание, тепловой, оптический, электрический, радиоволновый, радиационный, контроль проникающими веществами, ультразвуковой контроль. Наибольшее распространение получил последний метод, основанный на измерении длины волны, амплитуды, частоты или скорости распространения ультразвуковых колебаний в клеевом шве. По способу выявления дефектов среди методов ультразвукового контроля выделяют теневой, эхо-импульсный, импедансный, резонансный, велосимметрический, метод акустической эмиссии. Для реализации этих методов разработана соответствующая аппаратура (см. раздел 8). При контроле клееных сотовых конструкций с сотами из алюминиевого сплава и обшивками из ПКМ целесообразно применять несколько методов [100]. Акустический метод, например, с использованием импедансных дефектоскопов ИД-91М и АД-42И с частотной и амплитудной регистрацией колебаний соответственно эффективен для обнаружения отслоений сотового заполнителя от обшивки, а радиографический — для выявления повреждений сотового заполнителя и обшивки, а также для фиксирования мест заливки в соты пасты.  [c.537]


Все это коснулось и группы технической диагностики, которая выросла не только количественно с 5 человек (1993 г.) до 18 (1999 г.), но и качественно - в 1998 г. группа аттестована как лаборатория технической диагностики и неразрушающих методов контроля в Госгортехнадзоре с аккредитацией в Госстандарте России на техническое соответствие, компетентность и независимость. В лаборатории освоены и широко применяются практически все методы неразрушающего контроля, такие как визуальноизмерительный, акустические (акустико-эмиссионный контроль, ультразвуковая дефектоскопия, толщинометрия, твердометрия), контроль проникающими веществами - капиллярный (цветной и люминесцентный), магнитный (магнитопорошковый), вибродиагностика, вихретоковый. Большая часть сотрудников лаборатории имеет второй международный квалификационный уровень по вышеперечисленным методам неразрушающего контроля, а более 70 % специалистов владеют двумя и более видами контроля. Наши специалисты, используя сразу несколько методов неразрушающего контроля, могут оперативно и в полной мере оценить техническое состояние объекта. Это позволяет сократить до минимума необходимое количество работников, занятых при диагностировании, и охватить больший объем вьшолняемых работ, тем самым обеспечивается снижение себестоимости диагностических работ, при сохраняющемся высоком уровне достоверности результатов.  [c.45]

Первые два метода основаны на проникающей способности жидкости или люминесцентного порошка. При пользовании указанными методами поверхность изделия должна быть хорошо зачищена. После того, как подготовленная поверхность обработана жидкостью или порошком, их удаляют с поверхности. В случае цветной дефектоскопии на поверхность затем наносят специальное проявляющее вещество, которое обладает капиллярными свойствами и, вытягивая жидкость, остав-  [c.61]

Изотопные приборы, основанные на использовании проникающей способности у- (реже р-) излучения, в настоящее время занимают более половины всех поставок радиационной техники. В основу почти всех этих приборов положен один и тот же простой принцип счет в детекторе меняется, если меняется толщина или вид материала между детектором и источником. На основе этого принципа конструируются и выпускаются различные толщиномеры, плотномеры, уровнемеры, счетчики предметов, 7-дефектоскопы и многие другие приборы. На этом принципе основаны многочисленные у-релейные устройства, автоматически контролирующие и регулирующие ход производственных процессов. Бета-излучение сильно поглощается веществом. Из-за непрерывности (З-спектра (см. гл. VI, 4, п. 4) и из-за искривления пути электронов в веществе (см. гл. Vni, 3) разные электроны источника имеют разный пробег, от нулевого до некоторого максимального. Количество прошедших через вещество электронов довольно резко зависит от толщины слоя. Поэтому р-толщиномеры имеют довольно хорошую точность, но могут измерять лишь небольшие толщины. Такие толщиномеры применяются, например, для контроля за толщиной производимой фотопленки. Пленка проходит между источником и детектором. Малейшее отклонение толщины от стандартной изменяет число поглощаемых пленкой электронов, т. е. меняет скорость счета детектора. Для больших толщин используются у-толщино-меры. Интересной разновидностью прибора такого типа является односторонний у-толщиномер, измеряющий толщину определенного материала по величине у-излучения, рассеянного назад. Такие толщиномеры применяют для контроля размеров труб на Московском, нефтезаводе. Приборы, основанные на проникающей способности  [c.683]

В капиллярном виде контроля используют движение индикаторного вещества. Он применяется для выявления поверхностных дефектов в сварных соединениях из любых материалов. Распространение получили методы люминесцентной, цветной и люминесцентно-цветной дефектоскопии. Эти методы основаны на изменении светоотдачи дефектных участков с помощью заполнения их специальными свето- и цветоконтрастными индикаторными составами. При люминесцентном методе используют растворы люминофоров, которые дают яркое свечение в ультрафиолетовом свете. При цветном методе в качестве индикаторов (пенетрантов) используют растворы специальных красителей, проникающих в глубь дефектов, выходящих на поверхность. Люминесцентно-цветной метод является сочетанием двух предыдущих.  [c.24]

В основе капиллярной дефектоскопии лежит измоге-ние контрастностей изображения поверхностных дефектов и фона, на котором они выявляются с помощью специальных свето- и цветоконтрастных индикаторных жидкостей—пенетрантов. Их наносят на предварительно очищенную от загрязнений поверхность сварных соединений и некоторое время выдерживают, чтобы дать возможность жидкости заполнить полости дефектов. После этого удаляют избыток жидкости и наносят проявляющий состав. Индикаторная л<идкость, оставшаяся в дефектах, образует на фоне проявителя рисунок, по которому судят о наличии дефектов (рис. 26). Таким образом, эффективность контроля зависит от проникающей способности пенетрантов, извлечения этих веществ на поверхность изделия и локализации их у кромок дефектов.  [c.41]

С помощью методов капиллярной дефектоскопии можно выявлять трещины любого происхождения, а также пористость, рыхлость, заковы, выходящие на поверхность детали, межкристаллитную и язвенную коррозию, различного рода негерметичность в сочленениях. Риски с помощью методов капиллярной дефектоскопии не выявляются, так как проникающая жидкость очень легко удаляется из полости вследствие малого отношения глубины риоки к ее ширине (обычно меньше единицы). Составы некоторых проникающих жидкостей содержат токсичные вещества (а также и проявляющие краски), что необходимо учитывать при оп- ределении условий безопасной работы.  [c.63]

Люминесцирующие вещества для дефектоскопии, помимо хорошей люминесценции и проникающей способности, должны быть инертными в смысле химическо-го взаимодействия с испытываемым материалом в отношении коррозионного действия. Все люми11есци-рующие вещества, указанные в табл. 2-1, полностью удовлетворяют этим требованиям.  [c.65]


Смотреть страницы где упоминается термин Дефектоскопия проникающими веществами : [c.337]    [c.13]    [c.115]    [c.191]    [c.298]    [c.277]   
Теплоэнергетика и теплотехника Общие вопросы (1987) -- [ c.337 ]



ПОИСК



Вещества проникающие

Дефектоскопия

Дефектоскопы

Проников



© 2025 Mash-xxl.info Реклама на сайте