Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электростанции коэффициент энергии

Задача 7.1. На электростанции установлены три турбогенератора мощностью iV=50 10 кВт каждый. Определить количество выработанной энергии за год и коэффициент использования установленной мощности, если площадь под кривой годового графика нагрузки станции F—9,2 10 м и масштаб графика т = 9 10 кВт ч/м .  [c.199]

Задача 7.2. На электростанции установлены два турбогенератора мощностью Л =25 10 кВт каждый. Определить среднюю нагрузку станции и коэффициент использования установленной мощности, если количество выработанной энергии за сод Э = 3010" кВт ч.  [c.199]


Задача 7.7. На электростанции установлены три турбогенератора мощностью N=25 10 кВт каждый. Определить коэффициенты использования установленной мощности, нагрузки и резерва, если количество выработанной энергии за год = = 394,2 10 кВт ч и максимальная нагрузка станции Л = 65,2 10 кВт.  [c.201]

Комбинированный цикл, включающий паровую турбину, работающую на паре, произведенном и перегретом в трубных пучках, непосредственно омываемых кипящим слоем, и газовую турбину, приводимую в движение отходящими газами от сжигания топлива, согласно расчетам, должен обеспечить коэффициент полезного действия преобразования энергии от 40 до 42 % по сравнению с 36—38 7о, достигаемыми на обычных угольных электростанциях. А это сулит 10 %-ную экономию топлива.  [c.171]

Тепловые электростанции могут вырабатывать не только электрическую, но и тепловую энергию (горячая вода для отопления и водоснабжения и пар для технологических нужд производства). Коэффициент полезного действия современных теплоэлектростанций (ТЭЦ) еще выше и достигает 60—70%.  [c.104]

Созданные за прошедшие два столетия машины имеют низкий коэффициент полезного действия, например у паровоза он равен 10—15. А это значит, что 85—90<>/о энергии, заключающейся в топливе, теряется бесполезно. Велики непроизводительные затраты и потери энергии и на тепловых электростанциях в процессе преобразования ее на путях от котлов к турбинам и генераторам.  [c.261]

Применение графита в качестве замедлителя и конструкционного материала в строительстве ядерных реакторов обусловлено его сравнительно небольшой стоимостью, легкостью механической обработки, малым сечением захвата нейтронов ( 4 м барн) и хорошей замедляющей способностью. Графит снижает энергию нейтронов, которые участвуют в делении. Это замедление происходит в результате упругого соударения между нейтронами и атомами замедлителя. По величине коэффициента замедления М, т. е. отношению замедляющей способности к макроскопическому сечению поглощения, реакторный графит (М = 190) хотя и далек от тяжелой воды (М = 3300), но близок к бериллию (М = 150), окиси бериллия М = 200) и значительно выше воды (М = 61). Замедляющая способность графита объясняется его малым (12,01) атомным весом. Он был применен в реакторе, на котором в СССР впервые была осуществлена цепная реакция. В реакторах атомных электростанций также используется в качестве замедлителя графит.  [c.390]


Таким образом, химическая или атомная энергия непосредственно переходит в электрическую с коэффициентом полезного действия 60 процентов — это в полтора раза выше, чем у лучших современных электростанций.  [c.114]

Теплообменные аппараты — холодильник и конденсатор, расположенные за парогазовой турбиной,— представляют собой обычные низкотемпературные теплообменники, которые на современном уровне техники и знаний могут быть выполнены достаточно компактными, легкими по весу и с низкой стоимостью. Тепло, отводимое в холодильнике и конденсаторе от парогазовой смеси, может быть использовано для нагрева свежей парогазовой смеси и топлива — регенерации тепла, а также для получения водяного пара (или горячей воды) — генерации дополнительной электрической энергии в обычном паровом цикле или теплофикации — при комбинированном производстве электрической и тепловой энергии на теплофикационных электростанций с ПГТУ, что позволит значительно повысить коэффициент использования (до 70—75%) и снизить удельный расход топлива (до 0,16—0,18 кг у.т./(кВт-ч)).  [c.129]

Основным показателем энергетической эффективности электростанции является коэффициент полезного действия (КПД) по отпуску электрической энергии, называемый абсолютным электрическим коэффициентом полезного действия электростанции. Он определяется отношением отпущенной (производственной, выработанной) электроэнергии к затраченной энергии (теплоте сожженного топлива).  [c.15]

Конденсационная электростанция. Основной энергетический показатель конденсационной электростанции (конденсационного энергоблока) — коэффициент полезного действия нетто, учитывающий собственный расход электрической и тепловой энергии. С коэффициентом полезного действия непосредственно связаны такие важные энергетические показатели, как удельные расходы теплоты и условного топлива па отпускаемую электроэнергию.  [c.275]

Оценка экономичности работы тепловой электростанции. Эффективность работы ТЭС характеризуется различными технико-экономическими показателями, Одни из них оценивают совершенство тепловых процессов, — например показатели тепловой экономичности, к которым относятся к. п. д. агрегатов, цехов и всей электростанции в целом, а также расходы теплоты и топлива на единицу отпускаемой энергии. Другие характеризуют условия, в которых работает тепловая электростанция, — например это показатели режима, к ним относятся соотношение конденсационной и комбинированной выработки электроэнергии, коэффициент использования и число часов использования установленной мощности, показатели численности персонала (затраты труда) и стоимости сооружения электростанции (капитальные затраты). Наиболее важными и полными показателями работы ТЭС являются себестоимости электроэнергии и теплоты. Оценка эффективности работы ТЭС и начисление премии персоналу производятся на основе сравнения действительных и плановых себестоимостей.  [c.12]

На рис. 2.3 приведен примерный энергетический баланс СССР, указаны коэффициенты полезного использования энергоресурсов у различных потребителей (они несколько завышены, так как не учитывались потери топлива при транспортировании, переработке и хранении). За 100% принято количество потенциальной энергии, содержащейся в израсходованных первичных энергоресурсах. Энергоресурсы распределены между тремя главными потребителями— энергоустановками прямого использования топлива, электростанциями, котельными.  [c.48]

Комбинированная выработка тепловой и электрической энергии приводит к существенной экономии энергоресурсов и снижению затрат на вырабатываемую энергию коэффициент полезного использования тепла на ТЭЦ превышает 0,8, в то время как на конденсационных электростанциях он не более 0,4.  [c.56]

В промышленности СССР принята следующая классификация затрат на производство продукции сырье и основные материалы, вспомогательные материалы, топливо и энергия амортизация основных фондов основная и дополнительная заработная плата, отчисления на социальное страхование услуги прочие затраты. На электростанциях затраты на сырье и основные материалы отсутствуют, а вместо затрат на топливо и энергию для расчетов берутся затраты только на топливо. Поскольку на АЭС имеет место круглосуточная эксплуатация оборудования и высокий среднегодовой коэффициент использования основных фондов, в качестве самостоятельной статьи учитываются затраты на текущий ремонт и услуги сторонних организаций.  [c.442]


В результате на ТЭС в зависимости от вида топлива, начальных и конечных параметров, тепловой схемы и других причин в электрическую сеть передается только около 40 % энергии топлива. При этом часть этой энергии приходится заимствовать из сети обратно для питания электродвигателей питательных, циркуляционных и других насосов, для зарядки резервных аккумуляторных батарей и т.д. (это так называемые собственные электрические нужды станции). В результате в зависимости от параметров пара, вида топлива, режима работы, времени года и т.д. абсолютный КПД электростанции составляет всего 35—37 %. Эту величину для конденсационной электростанции с равным успехом можно называть КПД электростанции и коэффициентом полезного использования топлива.  [c.28]

Кроме того, исключение из работы части оборудования электростанции неизбежно приводит к удорожанию производства энергии из-за уменьшения коэффициента использования оборудования, так как при тех же капиталовложениях энергии вырабатывается меньше.  [c.427]

Коэффициент полезного действия электростанции, определяемый без учета расхода энергии на собственные -нужды, называют к. п. д. брутто  [c.212]

Сконструирован, изготовлен и испытан лабораторный прибор для разделения изотопов А-9 путем диффузии в пленку растворителя. Опыты показали, что коэффициент обогащения при этом методе такой же, как и при обычной диффузии, но с гораздо большей затратой энергии. Наряду с этим, выявились следующие преимущества простота аппаратуры, отсутствие фильтров, наличие возможности использовать отработанное тепло электростанций или котельных установок. В настоящее время проводятся работы по определению экономической целесообразности промышленного применения этого метода.  [c.620]

Пс. н — коэффициент, учитывающий расход энергии на собственные нужды станции, зависит от типа электростанции, ее мощности, рода топлива и способа его сжигания т]о. н = 0,94 - 0,96 для мощных конденсационных станций, работающих соответственно на твердом топливе или газе.  [c.73]

Дистиллированная вода высокой чистоты — наиболее распространенный теплоноситель. Она используется на первой в мире промышленной атомной электростанции Академии наук СССР и будет использована еще на нескольких крупных атомных электростанциях. Достоинства ее — высокий коэффициент теплоотдачи, небольшой расход энергии на перекачку, низкая стоимость. Недостатком же является необходимость значительного повышения давления в контуре при сравнительно невысокой температуре, для того чтобы избежать кипения в реакторе, в результате чего параметры пара, получаемого в парогенераторе и идущего к турбине, невысокие. К недостаткам также следует отнести и необходимость работы не на природном, а на слегка обогащенном уране в частности, из-за наличия в реакторе большого количества конструкционных материалов, поглощающих нейтроны.  [c.394]

Введем понятие термодинамического коэффициента теплоснабжения, равного отношению эксергии тепла, переданного тепловому потребителю, к первичной энергии, затраченной на электростанции или в отопительной котельной. Для теплового насоса, получающего электроэнергию от электростанции, этот коэффициент будет иметь вид  [c.329]

Если учесть все потерн энергии в электродвигателе, редукторе, электрической сети, генераторной паротурбинной установке тепловой электростанции и КПД удара, то получим экономический КПД молотовой установки. Величина этого коэффициента, по данным [9], составляет примерно 0,06 при условии, что молот изготовлен качественно и находится в хорошем состоянии. При несоблюдении этих условий в практике получают еще более низкие значения экономического КПД ( 0,03).  [c.411]

Для теплофикационной электростанции, вырабатывающей два вида продукции — электрическую и тепловую энергию, можно составить аналогичный показатель, включив в числитель сумму энергий обоих видов полученное отношение называют коэффициентом использования тепла топлива. Обозначив его буквой можно написать  [c.269]

Этот коэффициент не полностью характеризует совершенство электростанции, так как в числителе берется сумма электрической и тепловой энергий, неравноценных между собой по затратам тепла топлива на каждую из них. Кроме того, он не дает представления об экономичности выработки каждого вида продукции в отдельности поэто-. му для характеристики работы теплоэлектроцентрали пользуются и другими коэффициентами.  [c.270]

Задача 7.6. На электростанции установлены три турбогенератора мощностью N=50 10 кВт каждый. Определить число часов использования установленной мощности и коэффивд1ент резерва станции, если количество выработанной энергии за год Э = 788,4 10 кВт ч и коэффициент нагрузки к = 0,69.  [c.201]

Эффективное решение проблемы аккумулирования энергии позволило бы электроснабжающим компаниям переключить большую часть нагрузки, в настоящее время покрываемую за счет пиковых электростанций и оборудования, работающего для удовлетворения полупиковых нагрузок, на наиболее эффективные базисные электростанции (рис. 10.1). К последним обычно относятся АЭС и ТЭС, работающие на угле, имеющие высокий КПД и большее число чэсов использования установленной мощности. В полупиковом режиме чаще всего работают старые тепловые ТЭС, имеющие по сравнению с базисными электростанциями меньший КПД, или ТЭС, работающие на природном газе. В пиковом режиме обычно. работают газотурбинные установки (ГТУ) или дизельные электростанции (ДЭС). Повышение коэффициента нагрузки базисных электростанций в сочетании с аккумулированием электроэнергии,, вырабатываемой в периоды провалов графиков нагрузки, позволило бы удовлетворить потребности в пиковой энергии, не прибегая к услугам старых, менее эффективных электростанций. В результате такого перераспределения не только увеличилась бы общая эффективность производства электроэнергии, но и сократился бы расход ценных видов органического топлива. Совершенствование аккумулирования электроэнергии способствовало бы также более эффективному вовлечению в использование в рамках объеди-  [c.243]


Ученые США считайт возможным в настоящее время строительство орбитальных солнечных электростанций мощностью по 5—10 МВт. Б США разработан внеземной вариант солнечной энергоустановки, который предполагается реализовать в 1980—1985 гг. Масса ее 25 т. Советские исследователи в области использования солнечной энергии Н. С. Лидоренко и С. Ф. Мучник сообщают, что примерно в 80-е годы возможно опытное применение автономных солнечных установок небольшой мощности По их мнению, главная трудность в широком использовании солнечной энергии — высокая стоимость фотоэлектрического метода ее преобразования и относительно низкий коэффициент полезного действия — не более 15%.  [c.323]

Порок современной атомной электростанции заключается в том, что мы еще не умеем преобразовывать энергию атомного ядра непосредственно в электрическую. Приходится сначала получать тепло, а затем превращать его в движение теми же дедовскими сио-, собами, которые существуют с момента изобретения паровой машины. Из-за этого невысок и коэффициент полезного действия атомной электростанции. И хотя это является общим дефектом всех тепловых станций, но все-таки досадно, что проблема отъема тепла и из ядер-ного реактора должна решаться громоздкими, технически несовершенными средствами.  [c.8]

Фотоэлектрическое преобразование солнечной энергии в электричество с использованием силиконовых солнечных элементов было разработано в 1955 г. фирмой Белл лабораториз (США) и стало с тех пор основной энергетической базой для космической техники. При затратах 10—15 тыс. долл, на пиковый 1 кВ-т и к. п. д. порядка 12—15 % производство электроэнергии этим методом обходится в 50—100 раз дороже, чем традиционным путем. Своего рода технологическая революция, подобная миниатюризации ЭВМ, потребуется для того, чтобы фотоэлектрическая энергия смогла стать важным элементом в мировой энергетике. Возможно, первые шаги в этом направлении прорыва проводятся в работе, организованной Электроэнергетическим исследовательским институтом США (EPPI) с объемом финансирования 25—30 млн. долл, на 1978—1983 гг. Работа направлена в основном на разработку термофотоэлектрических преобразователей, в которых включение металлического элемента между солнечным светом и солнечным элементом увеличивает использование инфракрасных лучей. Как сообщалось в 1977 г., работы, проводимые в Станфордском университете, позволили увеличить коэффициент преобразования с обычных 12% до 26% есть надежда на увеличение к. п. д. до 35 %> т. е. до уровня крупных электростанций. В этом направлении ведется много работ, и были указания, что разработка конкурентоспособных солнечных элементов в 1979 г. при использовании специальных аморфных сплавов в тонких пленках возможна  [c.218]

Отопление и кондиционирование — еще одна важная область конечного использования энергии, в которой может быть получена экономия. Так, в США в 1985 г. в этой области может быть получена экономия энергии, эквивалентная 50 млн. т нефти в год, и еще 55 млн. т могут быть сэкономлены за счет улучшения изоляции помещений в строительстве [9]. По этому поводу, однако, почти невозможно сделать какие-либо общие выводы. В существующей практике изоляции помещений имеются большие различия между странами и даже внутри крупных стран, так же как в принятой температуре внутри помещений, в расчетной температуре наружного воздуха для проектирования отопительных систем, а также в степени распространения централизованного отопления или тепловых насосов. Если в США возможная экономия энергии определяется более или менее надежно, подобные расчеты для Европы выполнить значительно труднее. В отличие от США здесь наблюдается больщое разнообразие бытовых отопительных систем используются дрова, уголь, природный газ, электрические камины применяются центральные отопительные системы на всех видах топлива, причем большое значение имеют различия в индивидуальных вкусах. В этих условиях вид добровольной экономии мог бы и должен играть важную роль попытки оценить возможности такой экономии делались. Во Франции доля отопления в общем потреблении энергии оценивается в 25 %, поскольку широко используются уголь и дрова с отоплением связаны значительные проблемы загрязнения среды. В 1974 г. в Норвегии исследовалась возможность применения электроэнергии для отопления помещений причем доказывалось, что издержки в этом случае оказываются дополнительными по отнощению к издержкам, связанным с обеспечением электроэнергией обязательных потребителей, и поэтому удельные затраты окажутся вдвое ниже, чем для бытового электроснабжения без отопления. Это пример пропаганды, направленной на обеспечение экономии второго рода, т. е. с использованием усовершенствованных приборов. Поскольку существует мнение о расточительности электроотопления, интересно отметить, что в одной из американских работ 1974 г. [43] указывается, что практически при электроотоплении достигается тот же самый коэффициент преобразования первичных энергетических ресурсов, что и при использовании печей на нефтетопливе. Более того, на электростанциях могут применяться разнообразные виды первичных энергоресурсов разного качества .  [c.276]

Все разговоры об интригующих особенностях ЭХГ опираются на непонимание действительных особенностей их энергетического баланса и связанное с этим неверное определение их КПД. Здесь сказываются традиции подсчета термического КПД электростанций, работающих на органическом топливе. Термический КПД Т1, для них подсчитывается по отношению полученной электроэнергии 1эл к теплоте сгорания использованного оплива Он равен, по существу, отношению полученной электроэнергии к затраченной теплоте т]т= =Ьэл1АН. Строго говоря, поскольку в нем сопоставляются качественно различные формы энергии — теплота и работа. Т1т представляет собой не КПД, а коэффициент преобразования энергии.  [c.217]

Величина представляет коэффициент использования тепла топлива при выработке энергии нА тепловом потреблении и не является цоэффициентом полезного действия электростанции.  [c.34]

Приведенная выше динамика индексов роста потребления электроэнергии и топливно-энергетических ресурсов (табл. 4-1) предопределяет, очевидно, и замедление темпов роста значений топливно-электрических коэффициентов в промышленно развитых странах (табл. 4-2). На изменение величин топливноэлектрических коэффициентов значительное влияние оказывает уровень эффективности использования топливно-энергетических ресурсов и энергии. По ряду опубликованных зарубежных данных можно судить о том, что за последние 15—20 лет в основных капиталистических странах и в первую очередь в ФРГ, Франции и Великобритании в связи с напряженностью их топливного баланса был почти полностью модернизирован и обновлен энергетический аппарат промышленности при этом был проведен ряд мероприятий по повышению к. п. и. топлива не только на электростанциях II крупных котельных, но и в энергогенерирующих установках децентрализованного сектора,  [c.151]

Основные факторы, обусловливающие снижение КИУМ в энергосистемах стра- 5 ны, — это все большая электрификация быта, вызывающая рост бытовой нагрузки, которая, по существу, является резко пиковой (см. рис. 2.12) односменная работа на многих промышленных предприятиях, где производство не носит непрерывного характера дальнейшее расширение перевода железнодорожного транспорта на электрическую тягу и все более глубокая электрификация сельского хозяйства и культурно-бытового обслуживания населения, живущего в сельской местности. Все эти факторы имеют долгосрочный характер и позволяют считать, что в период до 2000- г. будет происходить дальнейший рост неравномерности потребления электроэнергии и дальнейшее снижение КИУМ энергосистемы (коэффициента нагрузки) как по стране в целом, так и по крупным экономическим районам. В связи с этим необходимо предусматривать в проектах электростанций, в том числе атомных, технические возможности для работы в переменных режимах или проектировать их в комплексе с аккумуляторами энергии и с учетом этого оценивать экономические показатели АЭС.  [c.65]


Атомные электростанции могут быть сооружены в любом географическом районе, в том числе и труднодоступном, но при наличии источника водоснабжения. Количество (по массе) потребляемого топлива (уранового концентрата) незйачительно, что облегчает т >ебования к транспортным связям. АЭС состоят из ряда агрегатов блочного типа, выдающих энергию в сети повышенного напряжения. Агрегаты АЭС, в особенности на быстрых нейтронах, неманевренны, так же как и афегаты КЭС. По условиям работы и регулирования, а также по технико-экономическим соображениям предпочтительным является режим с относительно равномерной нагрузкой АЭС предъявляют повышенные требования к надежности работы оборудования. Коэффициент полезного действия составляет 35—38%. Практически АЭС не загрязняют атмосферу. Выбросы радиоактивных газов и аэрозолей незначительны, что позволяет сооружать АЭС вблизи городов и центров  [c.92]

Гидроаккумулирующие электростанции предназначены для выравнивания суточного графика энергосистемы по нагрузке. В часы минимальной нагрузки они работают в насосном режиме (перекачивают воду из нижнего водоема и запасают энергию) в часы максимальной нагрузки энергосистемы агрегаты ГАЭС работают в генераторном режиме, принимая на себя пиковую часть нагрузки. ГАЭС сооружают в системах, где отсутствуют ГЭС или их мощность недостаточна для покрытия нагрузки в часы пик. Их выполняют из ряда блоков, вьщающих энергию в сети повышенного напряжения и получающих ее из сети при работе в насосном режиме. Агрегаты высокоманевренны и могут быстро переводиться из насосного режима в генераторный или в режим синхронного компенсатора. Коэффициент полезного действия ГАЭС составляет 70 75%. Их сооружают там, где имеются источники водоснабжения, а местные геологические условия позволяют создать напорное водохранилище.  [c.93]

В данных табл. 1.21 четко прослеживается, что основу мирового энергетического баланса и в перспективе ближайгпих пяти десятилетий будут составлять органические топлива, доля которых в общем мировом производстве первичных энергетических ресурсов на уровне 2020 г. будет находиться в пределах 70—84 % и в 2050 г. — 59—73 %. В этой связи можно отметить следующее. Большая группа сотрудников Минэнерго США выступила на конгрессе МИРЭС в г. Хьюстоне с докладом Путь к экологически чистой и приемлемой энергии для XXI века . По мнению авторов этого доклада, на базе органического топлива в будущем столетии можно будет производить относительно дешевую электроэнергию с КПД электростанции 60 % при использовании угля и с КПД 70 % при использовании природного газа. При этом, как они считают, будет обеспечен замкнутый углеродный цикл при сжигании угля, а выброс загрязняющих веществ в атмосферу будет практически сведен к нулю. Предполагается также, что в следующем веке будут широко применяться технологии производства на базе угля экологически чистых топлив и химических продуктов с коэффициентом полезного использования угля свыше 90 % [30].  [c.28]

Коэффициентом полезного действия конденсационной электростанции г)эс называется отношение количества энергии, превращенной в электрическую, к энергии, подведенной с топливом. В системе МКГСС формула для определения к. п. д. имеет вид  [c.211]

Но мы уже могли убедиться на многих примерах, что освоение возобновляемых источников энергии упирается в низкую плотность притока энергии такая величина, как 200—300 Вт/м в виде теплового излучения, даже при применении концентраторов еще мала и приводит к сравнительно невысокому значению коэффициента эксергии-нетто. Это обстоятельство пока препятствует широкому применению и гелиостатных (башенных) солнечных электростанций, и фотопреобразователей солнечной энергии на полупроводниках. Из-за низкой плотности потока солнечной энергии затраты энергии на металл для гелиостатов и на полупроводники или концентраторы излучения еще недопустимо велики.  [c.110]

Основным достоинством газов (углекислота, гелий) как теплоносителей в ядерных реакторах является возможность получения высокой температуры на выходе из реактораприневысокихдавлениях. Существенные недостатки их — низкие коэффициенты теплоотдачи и в результате большие габариты реактора и теплообменной аппаратуры, а также значительный расход энергии на циркуляцию газа. Углекислый газ используется в качестве теплоносителя на первой английской атомной электростанции в Колдерхолле (пущена в 1956 г.) и будет использован на одной из строящихся у нас станций.  [c.395]

Выбор экономической величины коэффициента теплофика-для ТЭЦ имеет большое значение. Оптимальные значения этого коэффициента определяются технико-экономическими расчетами по минимальным суммарным затратам на производстве электрической и тепловой энергии. Для современных турбин с низким давлением в отопительном отборе оптимальные значения коэффициента теплофикации находятся в интервале 0,4—0,70. Нижний предел этого коэффициента относится к условиям, когда начальные параметры пара ТЭЦ значительно ниже, чем на конденсационных электростанциях, работающих в энергосистемах или в объединении. Верхний предел относится к одинаковым начальным параметрам ТЭЦ и конденсационных электростанций.  [c.14]


Смотреть страницы где упоминается термин Электростанции коэффициент энергии : [c.326]    [c.32]    [c.13]    [c.532]    [c.391]    [c.532]    [c.320]   
Справочник для теплотехников электростанций Изд.2 (1949) -- [ c.351 ]



ПОИСК



Электростанции



© 2025 Mash-xxl.info Реклама на сайте