Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Водяной пар контроль при низких давлениях

На фиг. 20 показаны две типовые конструкции постовых водяных затворов низкого давления. Затворы сделаны разборными для возможности контроля состояния их внутренних частей.  [c.67]

Конденсатор холодильной машины контейнера имеет воздушное охлаждение. Однако часто в ресивер встраивают теплообменную поверхность, превращая его в дополнительный конденсатор с водяным охлаждением, включаемый во время морских перевозок, что позволяет облегчи.ъ работу компрессора и снизить температуру в контейнерных трюмах. Испаритель-воздухоохладитель смонтирован в общем машинном отделении с другими частями установки. Охлажденный воздух от испарителя поступает через каналы в полу контейнера, проходит между пакетами с охлаждаемым грузом и возвращается через отверстия в верхней части теплоизолированной стенки. Включение и выключение компрессора обеспечивается автоматически при помощи реле температуры, теплочувствительный элемент которого установлен в потоке воздуха (у входа в испаритель). В дополнение к автоматическому контролю используется дистанционный термометр и лампы, сигнализирующие отклонение температуры воздуха от заданной на гь2 С. Термограф регистрирует температуру воздуха в течение недели. Компрессор оснащен приборами автоматической защиты реле высокого и низкого давления, контроля смазывания.  [c.99]


Жидкость из баллона 11 про.ходит через магистральный вентиль 10 в водяной испаритель 2, связанный трубками 3 п 1 с системой жидкостного охлаждения, и через фильтр 9 поступает в редуктор 8, где давление газа снижается до атмосферного. Далее по газопроводу 7 низкого давления газ проходит в смеситель и оттуда в смеси с воздухом в двигатель 14. Манометры 12 и 13 служат для контроля давления газа в баллоне и редукторе. Показанный на рисунке двигатель является специально газовым он имеет более высокую,  [c.302]

Схема многомерного пневматического приспособления [7] для контроля диаметров, некруглости и конусности 31 отверстия передней бабки токарного станка, разработанного БВ, изображена на рис. П1.42, а. Диаметры контролируемых отверстий находятся в пределах от 22 до 150 мм. Допуски на размеры заданы по 2-му и 1-му классам точности. Проверяемую деталь 1 снимают краном с рольганга 12, подают на приспособление 5 и фиксируют двумя базовыми штифтами 2. Справа и слева установлены измерительные каретки 3, несущие пневматические пробки 4. На правой измерительной каретке установлено 19 пневматических пробок, а на левой — 12. С помощью маховичка 11, на оси которого сидит шестерня 8, и рейки 9 каретки перемещаются по цилиндрическим направляющим 10 на роликах 7, и пневматические пробки вводятся в проверяемую деталь и выводятся из нее. Результаты измерения фиксируются на визуальном отсчетном устройстве 6, расположенном рядом с приспособлением. Отсчетное устройство состоит из семи пятитрубных приборов низкого давления с водяным манометром, собранных в один блок.  [c.191]

Существенное значение имеет только влияние влажности на загрязнение пара, поэтому эксплуатационный контроль ведется не по влажности, а по содержанию примесей в паре. (При низких и средних давлениях, когда содержание веществ в ларе определяется в основном только уносом капелек влаги, коэффициент выноса этих веществ практически равен влажности пара, т. е. Л =Ц . При всех давлениях уменьшение влажности пара осуществляется путем применения в барабане сепарацион-ных устройств. В барабан включаются трубы разных испарительных поверхностей нагрева — конвективных пучков или радиационных экранных панелей, которые работают с различны.ми удельными тепловыми нагрузками. Ввод пароводяной смеси от этих испарительных поверхностей нагрева осуществляется в паровой или водяной объемы барабана, причем все эти вводы по конструктивному выполнению могут быть сведены к следующим основным типам а) равномерный по длине барабана ввод труб конвективного пучка б) равномерный по длине барабана ввод труб экранных поверхностей нагрева в) местные концентрированные вводы отводящих труб от верхних коллекторов экранных панелей.  [c.8]


Обычно выбор материалов для контура водо-водяных реакторов, которые работают при максимальной температуре 300° С, делают между углеродистыми и низколегированными сталями или аустенитными нержавеющими сталями. Скорость коррозии этих материалов низкая для нержавеющей стали при оптимальных условиях она составляет 0,5 г/м в месяц или 0,0007 мм в год, в то время как для углеродистых и низколегированных сталей 1,5—3 г/м в месяц или 0,0023—0,005 мм в год. Поэтому нет особой необходимости уменьшать возникающие напряжения или улучшать герметичность в хорошо контролируемых системах. Однако значительные проблемы связаны с продуктами коррозии, которые циркулируют через реакторную систему и высаживаются на поверхность металла или вымываются с нее непрерывно или периодически в зависимости от условий работы. Эти продукты коррозии обычно присутствуют в виде изолированных частиц диаметром <1 мкм и представляют собой шпинель типа R3O4, где R — железо, никель и хром. Скорость накопления продуктов коррозии в больших реакторах может достигать 10 0 г/сут. Они могут выпадать в осадок в зонах, где нет движения теплоносителя или действуют большие градиенты давления и высокие скорости теплопереноса, и собираться на поверхности тепловыделяющих элементов, где они активируются. Осажденное вещество воздействует на активацию, гидравлику, теплоперенос и реактивность. Наиболее значительный эффект состоит в том, что они могут после облучения в активной зоне высаживаться на участках, которые плохо защищены от радиации или которые имеют лишь временную защиту и поэтому могут представлять опасность для обслуживающего персонала. Активации подвергается большинство элементов, входящих в состав стали. Но для реактора с длительным сроком службы наибольшую опасность представляет нуклид Со из-за большого периода полураспада и высокой у-ак-тивности. Поэтому необходимо уменьшатд количество продуктов коррозии и связанную с ней радиоактивность, сохраняя низкую скорость коррозии. Важно также при изготовлении контура реактора использовать материалы с минимальным содержанием кобальта. Стеллиты, которые содержат значительное количество кобальта, не должны контактировать с теплоносителем. Другие сплавы надо выбирать с учетом минимального содержания кобальта. Это особенно относится к никелевым рудам, обычно содержащим кобальт, который не всегда удается полностью удалить в процессе экстракции. Различные условия работы реакторов PWR и BWR требуют различных методов контроля коррозионных процессов.  [c.151]


Смотреть страницы где упоминается термин Водяной пар контроль при низких давлениях : [c.248]    [c.324]   
Справочник для теплотехников электростанций Изд.2 (1949) -- [ c.14 ]



ПОИСК



Водяной пар

Водяной пар контроль давление

Ц низкого давления



© 2025 Mash-xxl.info Реклама на сайте