Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рабочее тело паросилового цикла

Источником теплоты является реактор. Передача теплоты от теплоносителя к рабочему телу паросилового цикла производится в парогенераторе, в котором вырабатывается пар, направляемый в паротурбинную установку.  [c.266]

В настоящее время наибольшее развитие получили атомные электростанции, работающие по паротурбинному циклу. Паротурбинные АЭС отличаются типом реактора, видом теплоносителя, принципиальной тепловой схемой и т. д. Тепловая схема АЭС может быть одноконтурной, двухконтурной и трехконтурной. При одноконтурной схеме теплоноситель (вода) выполняет функции рабочего тела паросилового цикла. В реакторе 1 происходит нагрев воды и образование пара (рис. 51, а), который и направляется в турбину 2. После расширения пара в турбине и конденсации в конденсаторе 3 вода насосом 4 вновь подается в активную зону реактора. Одноконтурная схема проста. Однако пар, образующийся непосредственно в реакторе, радиоактивен, поэтому на таких станциях требуется специальное оборудование эксплуатация одноконтурных АЭС сложна. В одноконтурных схемах контуры теплоносителя и рабочего тела совпадают.  [c.205]


Ввиду дополнительных требований, предъявляемых к рабочему телу паросиловых установок, и трудности подыскания такого вещества, которое удовлетворяло бы всем требованиям, осуществляют циклы с двумя рабочими телами, Такие циклы получили название бинарных циклов.  [c.241]

Температуры теплоотдатчика и рабочего тела в ряде случаев, например, в паросиловых установках, существенно различны, так как ни свойства рабочего тела, ни свойства конструкционных материалов не позволяют довести температуру рабочего процесса цикла до температуры теплоотдатчика. Применение жаропрочных конструкционных материалов может несколько уменьшить эту разность температур того же самого можно достигнуть переходом на высокие давления рабочего тела в цикле (применительно к воде это будут закритические давления) использованием теплоты отходящих продуктов сгорания для подогрева топлива и предварительного подогрева рабочего тела можно улучшить общее использование выделяющейся при сгорании топлива теплоты. Но более перспективным (во всяком случае в паросиловых установках) является использование горячих продуктов сгорания, после того как завершено нагревание основного рабочего тела, в качестве вторичного рабочего тела (как это осуществляется в парогазовых установках) или применение бинарных циклов с использованием в верхнем цикле наиболее подходящего высокотемпературного рабочего тела. Возможно также использовать в качестве головного звена энергетической установки МГД генератор. В этом случае горячие газы сначала поступают в рабочий канал МГД-генератора, где часть кинетической энергии потока преобразуется в электри-  [c.526]

Схема ядерной энергетической установки. Процесс преобразования энергии в ядерной энергетической установке (рис. 18.34) состоит в следующем в ядерном реакторе 1 в результате деления ядер расщепляющихся элементов (атомного горючего) выделяется количество теплоты Q при некоторой температуре 1р. Из реактора эта теплота отводится потоком теплоносителя в парогенератор 2 и передается там рабочему телу термодинамического цикла. Этот цикл аналогичен циклу обычной паросиловой установки (то обстоятельство, что пар образуется в парогенераторе, а не в паровом котле с огневым нагревом, не является существенным). Теоретический цикл паросиловой ядерной энергетической установки изображен на рис. 18.35, а линия аЬ представляет собой линию охлаждения первичного теплоносителя при передаче теплоты  [c.591]


Наиболее распространенным рабочим телом теплосиловых паровых циклов является вода — самое доступное и дешевое рабочее тело. Специфические требования к рабочим телам паросиловых установок сформулированы в И-6 на основе анализа способов повышения эффективности циклов этих установок. Пока отметим лишь желательность того, чтобы при атмосферном давлении и комнатной температуре рабочее тело находилось в жидком состоянии,  [c.356]

Однако эти же свойства обусловливают чрезвычайно выгодные термодинамические характеристики ртути как рабочего тела паросиловых установок, позволяющие приблизить к. п. д. рабочего процесса установки к к. п. д. идеального цикла Карно.  [c.263]

Идеальным циклом паросиловой установки является цикл Ренкина. Рассмотрим термодинамическое изменение состояния рабочего тела паросиловой установки по этому циклу на ро-диаграмме (рис. 13-2). Цикл Ренкина состоит из четырех процессов — двух изобарных и двух адиабатных.  [c.136]

Фиг. 1-75. Расширение рабочего тела в цикле простейшей паросиловой установки при работе насыш,енным паром. Фиг. 1-75. Расширение <a href="/info/26581">рабочего тела</a> в <a href="/info/702876">цикле простейшей</a> <a href="/info/115031">паросиловой установки</a> при работе насыш,енным паром.
Процесс преобразования энергии в ядерной энергетической установке (ЯЭУ) (рис. 5.37) состоит в следующем в ядерном реакторе 1 в результате деления ядер расщепляющихся элементов (атомного горючего) выделяется тепло Q при некоторой температуре Т . Из реактора это тепло отводится потоком теплоносителя в парогенератор 2 и передается там рабочему телу термодинамического цикла. Этот цикл аналогичен циклу обычной паросиловой установки (то обстоятельство, что пар образуется в парогенераторе, а не в паровом котле с огневым нагревом, не является существенным).  [c.169]

Чем выше температура рабочего тела в цикле, тем больший КПД этого цикла. Но поднять температуру рабочего тела выше 340...350°С в паросиловой установке, работающей по циклу Карно, не представляется возможным, что ограничивает КПД такой установки.  [c.233]

В соответствии со вторым законом термодинамики значительная часть сообщенной рабочему телу в цикле тепловой энергии должна отводиться в холодильник. Это положение справедливо и для циклов паросиловых установок. В конденсаторе паросиловой установки вместе с водой может бесполезно уноситься до 60% тепловой энергии при температуре 15... 30°С (рис. 11.19). Эта вода не может быть использована для других потребностей, так как температура теплоносителя в этом случае почти равна температуре окружающей среды. При такой низкой температуре вода не может быть использована ни для отопительных, ни для технических нужд.  [c.250]

Как отмечалось выше, термический КПД паросиловых установок очень низкий, в связи с чем большое количество тепловой энергии может сбрасываться в окружающую среду, вызывая ряд экологических проблем, обусловленных повышением температуры этой среды. Повысить КПД паросиловой установки можно путем повышения температуры пара перед турбиной (после пароперегревателя). Однако для паросиловых установок, работающих на водяном паре, существует ограничение по давлению, которое не должно превышать 30 МПа, Это ограничение в первую очередь связано с прочностью современных материалов, применяемых для изготовления паросиловых установок. Ограничение верхнего предела давления пара в паросиловом цикле не позволяет увеличить температуру пара более 600 С. Нижняя температура рабочего тела в цикле Ренкина составляет 15... 30 С.  [c.254]


Что касается циклов с распадающимся на две фазы рабочим веществом, в частности циклов паросиловых установок, то иа том участке, где рабочее тело является влажным паром, изотермичность процессов подвода и отвода теплоты обусловливается поддержанием постоянного давления. Поэтому для процесса отвода теплоты, который лежит в области двухфазных состояний, ступенчатого сжатия не требуется. Для процесса подвода теплоты на том участке, где рабочее тело находится в виде перегретого пара, ступенчатый подогрев целесообразен, однако главным образом для повышения средней температуры рабочего тела на этом участке и увеличения степени сухости пара в процессе расширения (рис. 15.4). В этом случае также эффективна регенерация теплоты, которая осуществляется ступенчатым расширением пара в турбине (правая ветвь цикла) с отбором между ступенями части пара для подогрева жидкого рабочего тела.  [c.524]

Параметры рабочего тела оказывают значительное влияние на термический КПД цикла, но ири проектировании паросиловых установок необходимо учитывать и такие факторы, как безопасность работы, уменьшение габаритных размеров, металлоемкость и т. д.  [c.6]

Процессы преобразования теплоты, полученной при сгорании топлива, в механическую работу осуществляются в паросиловых установках, рабочим телом в которых чаще всего являются вода и водяной пар. Рассмотрение циклов паросиловых установок начнем с наиболее экономичного из них в заданном интервале температур — цикла Карно. Принципиальная схема установки и цикл представлены па рис. 12.1 и 12.2.  [c.200]

Для повышения к. п.д. паросиловых установок предусматривается создание циклов, в которых используется комбинация двух рабочих тел. Такие термодинамические циклы называются  [c.172]

Как будет изменяться к. п.д. цикла паросиловой установки, а также какие изменения произойдут с рабочим телом в конце расширения, если изменить начальные параметры пара pj = 1,5 МПа и Tj = 623 К следующим образом в первом случае повысить температуру перегрева до Т = 823 К при неизменном давлении pj, во втором — увеличить давление до р = 5 МПа при неизменной температуре 7j в третьем — одновременно повысить давление и температуру до р Г = 5 МПа и Т = 823 К. Расширение вести до давления pj = 0,005 МПа. Задачу решить по si-диаграмме водяного пара.  [c.146]

Отсутствие рабочего вещества для паросиловых установок, которое удовлетворяло бы всем предъявляемым требованиям, привело к применению в одной установке двух рабочих веществ. Каждое из них в определенном интервале температур является оптимальным. Циклы с двумя рабочими телами получили название бинарных.  [c.546]

Теоретические циклы паросиловой ЯЭУ изображены на рис. 8.38. Линия аЬ соответствует линии охлаждения первичного теплоносителя при передаче теплоты рабочему телу. В результате подвода теплоты от первичного теплоносителя к рабочему телу температура последнего повышается от температуры окружающей среды Т., до Т . Средняя температура рабочего тела на участке подвода теплоты меньше средней температуры первичного  [c.550]

Чтобы приблизить теоретический КПД цикла теплового насоса к КПД цикла Карно, можно использовать в качестве рабочего тела влажный пар какого-либо вещества. Б этом случае цикл теплового насоса совпадает с обращенным циклом паросиловой установки, работающей с влажным паром. От цикла парокомпрессионной холодильной машины он отличается только диапазоном температур.  [c.565]

Прежде чем приступить к изучению циклов изменения состояния рабочего тела, представим паросиловую установку в принятых условных обозначениях и рассмотрим ее несколько более подробно, чем это было сделано во введении к этой книге. Схема установки представлена на рис.  [c.170]

I 500—3 000° С. Это значительно выше того, что могут выдержать металлы, но стенки камеры, в которой происходит горение, можно охлаждать, к в этом случае такие температуры становятся приемлемыми. Однако конечная температура продуктов горения при расширении их в газовых турбинах до атмосферного давления оказывается еще значительно выше температуры окружающей среды, что неблагоприятно для термического к. п. д. цикла. Обратное наблюдается у другого рабочего тела — водяного пара. Он получается в перегревателе парогенератора путем подвода тепла от горячих газов через металлическую стенку труб перегревателя, и его температура всецело определяется жаропрочностью металла, которая не позволяет получать пар с температурами более 600—650° С, да и то при использовании весьма дорогих высоколегированных сталей. С другой стороны, как это было показано при анализе циклов паросиловых установок, конечная температура водяного пара при расширении его до принятых давлений в конденсаторе ненамного отличается от температуры окружающей среды, что благоприятно для экономичности цикла. Рассмотренные свойства того и другого рабочего тела привели к мысли о создании бинарного цикла, т. е. такого цикла, в котором участвовали бы два рабочих тела, каждое из которых вносило бы в цикл свое благоприятное для термического к. п. д. СВОЙСТВО. Такой бинарный цикл получил название парогазового цикла. В нем в высокотемпературной части рабочим телом служат продукты горения топлив, а в низко-  [c.193]

В свою очередь циклы тепловых двигателей можно разделить в зависимости от рабочего тела на две группы. Общим для циклов первой группы является использование в качестве рабочих тел газообразных продуктов сгорания топлива, которые на протяжении всего цикла находятся в одном и том же агрегатном состоянии и при относительно высоких температурах считаются идеальным газом (двигатели внутреннего сгорания, газовые турбины и реактивные двигатели). Характерная черта циклов второй группы — применение таких рабочих тел, которые в цикле претерпевают агрегатные изменения (жидкость, влажный и перегретый пар) и подчиняются законам, действительным для реальных газов (паросиловые установки).  [c.104]


Таким образом, в отличие от двигателя внутреннего сгорания в паросиловой установке продукты сгорания топлива в цикле непосредственно не участвуют, а являются лишь источником теплоты. Рабочим телом служит пар какой-либо жидкости (главным образом воды).  [c.118]

Наиболее действенный путь для повышения эффективного к. п. д. и экономичности паросиловой установки лежит в увеличении средней температуры рабочего тела в процессе подвода тепла, которое может быть достигнуто повышением начальных параметров пара, увеличением степени перегрева пара или введением промежуточного перегрева, применением регенерации тепла в цикле н бинарных циклов.  [c.451]

Регенеративный цикл по сравнению с обычным циклом паросиловой установки имеет при той же самой средней температуре отвода тепла более высокую среднюю температуру подвода тепла и поэтому обладает более высоким термическим к. п. д., меньшим, однако, термического к. п. д. цикла Карно с максимальной температурой, равной температуре перегретого пара ti. В цикле с регенерацией тепла потеря работоспособности при теплообмене между горячими газами и рабочим телом будет меньше, поскольку устраняется необратимый подвод тепла от теплоот-датчика на участке 3 4, а эффективный к. п. д. вследствие этого будет больше, чем в обычном цикле.  [c.451]

Цикл Ренкина - идеальный замкнутый процесс изменения состояния рабочего тела в простейшей паросиловой у ста-новке.  [c.68]

Из полученного выражения для термического КПД бинарного цикла видно, что термический КПД при введении в паросиловую установку второго рабочего тела (например, ртути) существенно повышается. Пусть л = 0>3 и т = = 0,3, тогда т , = 0,51.  [c.72]

Схема рис. 11.7 является схемой паросиловой установки с одной ступенью регенеративного подогрева воды. В мощных совоеменных паротурбинных установках число ступеней регенеративного подогрева достигает десяти 21]. В Т — -диаграмме (рис. 11.8, а) приведен рассматриваемый регенеративный цикл и график изменения количества пара вдоль линии расширения (рис. 11.8,6). Так как количество пара вдоль оси турбины переменно, а Т — -диаграмма справедлива для постоянного количества рабочего тела, изображение цикла на рис. 11.8, а условно. Из приведенных графиков следует, что каждый килограмм пара, поступающего в турбину, расширяется от давления р1 до давления рь совершая работу и = Ы — кг. Пар в количестве (1—я) долей килограмма расширяется до давления рг, совершая работу и — кг — Лг. Суммарная работа  [c.171]

Температуры теплоотдатчика и рабочего тела, например в паросиловых установках, существепно различны, так как ни свойства рабочего тела, ни свойства конструкционных материалов не позволяют довести температуру рабочего процесса до температуры продуктов сгорания топлива. Применение жаропрочных конструкционных материалов может несколько уменьшить эту разность температур такого же результата можно частично достичь при переходе на высокие давления рабочего тела в цикле (применительно к воде это будут закритические давления). Использование теплоты отходящих продуктов сгорания для подогрева топлива и предварительного подогрева рабочего тела дает возможность повысить эффективность применения выделяющейся при сгорании топлива теплоты. Перспективно (во всяком случае в паросиловых установках) использование горячих продуктов сгорания, после того как с их помощью завершен нагрев основного рабочего тела, в качестве вторичного рабочего тела в дополнительном цикле (как это осуществляется в парогазовых установках) нли применение бинарных циклов с использованием в верхнем цикле оптимального высокотемпературного рабочего тела. Можно также использовать в качестве головного звена энергетической установки МГД-генератор. В этом случае горячие газы вначале поступают в рабочий канал МГД-генератора, где кинетическая энергия потока преобразуется в электрическую энергию. На выходе из канала газы направляются в основную энергетическую установку, где отдают теплоту рабочему телу. Кроме использования МГД-генератора возможно создание термоэмиссиоиной надстройки . Целесообразным представляется также использование высоких температур продуктов сгорания для осуществления высокотемпературных химических реакций, в частности для получения водорода из водяного пара.  [c.516]

Двигатели внутреннего сгорания обладают двумя существенными преимуществами по сравнению с другими типами тепловых двигателей. Во-первых, благодаря тому что у двигателя внутреннего сгорания горячий источник тепла находится как бы внутри самого двигателя, отпадает необходимость в больших тенлообменных поверхностях, через которые осуществляется подвод тепла от горячего источника к рабочему телу. Это приводит к большей компактности двигателей внутреннего сгорания, например, по сравнению с паросиловыми установками. Второе преимущество двигателей внутреннего сгорания состоит в следующем. В тех тепловых двигателях, в которых подвод тепла к рабочему телу осуществляется от внешнего горячего источника, верхний предел температуры рабочего тела в цикле ограничивается значением температуры, допустимым для конструкционных материалов (так, например, повышение температуры водяного пара в паротурбинных установках лимитируется свойствами сталей, из которых изготовляются элементы парового котла и паровой турбины, — с ростом температуры, как известно, снижается предел прочности материала). В двигателях же внутреннего сгорания предельное значение непрерывно меняющейся температуры рабочего тела, получающего тепло не через стенки двигателя, а за счет тепловыделения в объеме самого рабочего тела, может существенно превосходить этот предел. При этом надо еще иметь в виду, что стенки цилиндра и головки блока цилиндров имеют принудительное охлаждение, что позволяет расширить тедшературные границы цикла и тем самым увеличить его термический к. п. д.  [c.319]

Недостатки, присущие водяному пару из-за его неблагоприятных термодинамических характеристик, особенно в области верхних температур цикла, а также высокие значения энтальпии от-работавщего пара привели к мысли использовать в паросиловых установках одновременно два рабочих тела. Паросиловые установки с двумя рабочими телами называют бинарными установками, а циклы, на основе которых они работают, бинарными ЦИК лами.  [c.141]

Температуры теплоотдатчика и рабочего тела в ряде случаев, например в паро- иловых установках, существенно различны, так как ни свойства рабочего тела, ни свойства конструкционных материалов не позволяют довести температуру рабочего роцесса цикла до температуры продуктов сгорания топлива. Применение жаропроч-1ых конструкционных материалов может несколько уменьшить эту разность температур того же можно достичь переходом на высокие давления рабочего тела в цикле применительно к воде это закритические давления) использованием теплоты отходящих продуктов сгорания для подогрева топлива и предварительного подогрева )абочего тела можно улучшить общее использование выделяющейся при сгорании топлива теплоты. Более перспективно (во всяком случае в паросиловых уста-ювках) использование горячих продуктов сгорания, после того как с их помощью-завершено нагревание основного рабочего тела, в качестве вторичного рабочего тела  [c.147]


Парогазовый цикл представляет собой бинарный цикл, в котором используются два рабочих тела — продукты сгорания и водяной пар. В газовом цикле температура газов на входе в т фбину 900—1000 С, а на выходе 350 С и более. В паросиловых установ-  [c.177]

Циклы, в, которых теплота подводится и отводится раздельно от совершения полезной внешней работы, используются в паросиловых установках и газовых турбинах со сгоранием топлива при р = onst. С практической точки зрения такие циклы представляют известные преимущества, так как позволяют нагревать и охлаждать рабочее тело в одних узлах установки, например в паровом котле и конденсаторе, а производить полезную работу в других узлах (в паровой или газовой турбине).  [c.516]

В тех случаях, когда рабочее тело претерпевает в процессе цикла фазовые превращения (как это имеет место в паросиловых установках), подвод или отвод теплоты на тех участках цикла, где рабочее тело находится в виде влажного пара, осуществляется изотермически вследствие совпадения условий р = onst Т = onst.  [c.523]

Рабочим телом в паросиловой установке является вода, превращаемая в насыщенный, а затем в перегретый пар. Из перегревателя водяной пар поступает в турбину, где, расширяясь, производит полезную работу. Отработавший пар конденсируется, а конденсат при помощи питательного насоса вновь поступает в котел. В отличие от двигателей внутреннего сгорания в паросиловой установке продукты сгорания топлива непосредственно не участвуют в рабочем цикле, они являются лишь источником теплоты (тенлоотдатчиком).  [c.539]

При анализе регенеративных циклов неявно принималось, что число регенеративных подогревателей бесконечно велико, вследствие чего регенеративный подогрев рабочего тела мог счит мым процессом (в дальнейшем цикл с обратимым регенеративным подогревом рабочего тела называется теоретическим регенеративным циклом). В действительных циклах одвод тепла от тепло-отдатчика к рабочему телу и регенеративный пс догрев рабочего тела осуществляются при конечной разности температур, т. е. необратимо. Примером подобного цикла является, например, регенеративный цикл паросиловой установки с конечным числом регенеративных подогревателей питательной воды.  [c.353]


Смотреть страницы где упоминается термин Рабочее тело паросилового цикла : [c.206]    [c.550]    [c.149]    [c.512]    [c.309]   
Техническая термодинамика Изд.3 (1979) -- [ c.357 ]



ПОИСК



Рабочее тело

Цикл рабочий



© 2025 Mash-xxl.info Реклама на сайте