Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Микроскопы измерительные рычажные

Для этой цели могут быть применены штангенциркуль, микрометр, рычажно-чувствительная, или индикаторная скоба, индикатор, оптиметр, пневматические приборы, электроиндукционные измерительные головки, емкостные измерительные головки, различные проекторы и микроскопы.  [c.155]

Накладной эвольвентомер позволяет также выявить ошибки в направлении зубьев колеса. Для этого необходимо тангенциальные салазки закрепить на основании прибора, а измерительный наконечник с помощью съемного держателя 4 перенести с тангенциальных салазок 6 на вертикальные 5. Если после этого вертикальные салазки привести в движение, то одновременно с ними с помощью кулисы и шарнирно-рычажной системы, предварительно установленной так же, как и при измерении эвольвенты, получают движение катковые салазки (весь прибор будет поворачиваться вокруг оси колеса). Движение катковых салазок зависит от положения кулисы, устанавливаемой на требуемый угол по угловому лимбу и отсчетному микроскопу. Если кулису повернуть на угол, равный углу наклона зубьев колеса по основному цилиндру (Рй), то при вращении прибора вокруг оси колеса его измерительный наконечник будет описывать относительно этой оси теоретическую винтовую линию. Отклонение в направлении зуба фиксируется самописцем.  [c.174]


Измерительными приборами и инструментами называют устройства, с помощью которых измеряют размеры деталей. Они делятся на универсальные и специальные. К универсальным относят штангенинструменты и угломеры, микрометрические инструменты (микрометры), рычажно-механические приборы (индикаторы), оптико-механические приборы (микроскопы).  [c.166]

Пример. Электрический рычажный прибор с механическим измерителем. СТОЙКОЙ, измерителем тока, электрическими принадлежностями измерительный микроскоп со столиком и микрометрическими винтами измерительная машина со шкалой, измерительным микроскопом и указателем измерительного усилия.  [c.30]

К первой группе измерительных приборов следует отнести в основном универсальный и инструментальный микроскопы. Ко второй группе следует отнести приборы рычажно-оптические, пневматические и электрические.  [c.67]

Поверка плоскостности и параллельности измерительных поверхностей микрометров, рычажных и индикаторных скоб, перпендикулярности оптической оси тубуса к плоскости стола инструментальных и универсальных микроскопов (пластина толщиной 40 мм) и др.  [c.634]

Средства измерений в машиностроении могут быть разделены на три основные группы меры, измерительные приборы и инструменты и калибры. Мерой называют средство измерений, предназначенное для воспроизведения физической величины размера меры делятся на однозначные и многозначные. К однозначным относятся концевые меры длины, угловые плитки, угольники, шаблоны к многозначным — масштабные линейки, транспортиры. Измерительными приборами и инструментами называют устройства для определения размеров различных заготовок, деталей и сборочных единиц к ним относятся штриховые инструменты с нониусом (штангенинструменты и универсальные угломеры), микрометрические инструменты, рычажно-механические приборы (индикаторы), инструментальные микроскопы и др. К калибрам относятся бесшкальные измерительные устройства, предназначенные для контроля размеров и формы изделий. Нормальной температурой измерений ГОСТом установлена температура 4-20 °С.  [c.218]

Выбор станкового СИ производится по табл, V РД 50-98-86. Условные обозначения СИ 7 Д 9а 116 12а 136 146 20а 31, 32а, в 36а. Этим обозначениям в табл,1 соответствуют следующие СИ 7д - индикатор часового типа с иеной деления 0,01 мм 9а - головка рычажно-зубчатая сценой деления 0,002 мм 116- индикатор многооборотный с ценой деления 0,002 мм 12а - индикатор многооборотный с ценой деления 0,001 мм 136 - микрокатар с ценой деления 0,01 мм 146 — микрока-тор с ценой деления 0,005 мм 20а - микатор сценой деления 0,002 мм 31 - микроскоп универсальный 32а. в - микроскоп измерительный универсалы ый 36а - прибор показывающий с индуктивным преобразователем. Все условия применения этих СИ также определены в табл. 1.  [c.97]


К классу II с допускаемой амплитудой скорости колебаний Оа = 0,1 мм/с, отнесены электронные микроскопы с разрешением 0,4 нм и более, растровые электронные микроскопы, фотоэлектрические интерферометры для поверки штриховых мер, стационарные специализированные приборы на основе голографии, компараторы, измерительные машины длины более 1 м, установки для поверки долемикрометровых головок, приборы для контроля линейных размеров с электронным индикатором контакта и ценой деления менее 0,1 мкм, оптические скамьи длиной до 5 м, эталонные установки для измерения плоского угла, автоколлиматоры с ценой деления 0,5" и менее, гониометры с погрешностью измерения 1" и менее, экзаменаторы с ценой деления 0,1", кругломеры, сферометры, весы лабораторные образцовые 1а 1-го и 2-го разрядов, лабораторные рычажные 1-го и 2-го классов точности, торсионные весы, особо точные продольные и круговые делительные машины, ультрамикротомы, металлорежущие станки особо высокой точности шлифовальной группы с направляющими качения, тяжелые высокоточные зу-бофрезерные станки, мастер-станки и т. п., плавильные печи для выращивания кристаллов, поливные машины для нанесения эмульсионных слоев.  [c.121]

Современная техника измерений сложилась в результате длительного развития методов и средств измерений на основе учения об измерениях — метрологии. Ускоренный прогресс техники измерений начался во второй половине XVIII в. и был связан с развитием промышленности. Повышение точности и производительности измерительных приборов происходило благодаря использованию новых принципов измерений, основанных на достижениях науки и техники. Первые приборы для высокоточных линейных измерений — компараторы для сравнения штриховых мер — были созданы в 1792 г. Промышленное производство инструментов для абсолютных измерений — штангенциркулей — организовано в 1850 г., а микрометров — в 1867 г. В конце XIX в. получили широкое распространение сначала нормальные, а затем предельные калибры, появились концевые меры длины. Механические приборы, предназначенные для относительных измерений, резко повысили точность в 1890 г. разработаны рычажные, затем зубчатые и рычажнозубчатые измерительные головки, в 1937 г. — пружинные измерительные головки. С 20-х гг. нашего столетия быстро развиваются оптико-механические приборы оптиметры созданы в 1920 г., интерференционные приборы — в 1923 г., универсальный микроскоп и измерительные машины — в 1926 г., проекторы — в 1930 г. В  [c.4]

Следует отметить также дальнейшее освоение пневматических и электропневматических измерительных систем Бюро взаимозаменяемости МСС и заводом Калибр создание (в Бюро взаимозаменяемости МСС) нового диференциального пневматического сильфон-ного прибора с самозаписью точностью в 0,05 мк создание в МГИМИП безэталонного метода аттестации круговых шкал с предельной погрешностью 0,1 сек. путем математической обработки результатов измерений по четырем микроскопам и клинового компаратора для точной аттестации шкал с предельной погрешностью 0,1 мк выпуск ряда рычажно-оптических приборов Главчаспрома для контроля деталей часовой промышленности, специального проектора для той же цели и разработку метода контроля малых размеров (ВНИИМ), базирующегося на сочетании ампулы уровня с механическим рычагом.  [c.4]

Так как измерительные средства, как правило, не имеют больших трущихся поверхностей, и действуют с относительно небольшими усилиями, то смазка играет здесь исключителвно вспомогательную роль. Подвижные элементы, продольные и круглые направляющие, ползунки, опоры скольжения и т. д. должны регулярно умеренно смазываться. Чувствительные передающие и преобразующие элементы, прежде всего такие, к которым нет свободного доступа (звенья передаточной цепи, шариковые направляющие у инструментального микроскопа), смазываются в достаточной степени предприятием-изготовителем и работают без повторной смазки. При обильной смазке у казанных элементов проявляются силы сцепления, затрудняющие свободное движение этих измерительных устройств и прн известных условиях повышающие погрешность измерений. Остатки высохшей смазки при незначительных перемещениях и усилиях могут иногда совершенно снизить точность передач и явиться причиной возникновения ошибок из.мерения. Поэтому шарниры, рычажные устройства и т. п. никогда не рекомендуется смазывать из-за опасности осмоления,  [c.540]


По конструкции и способу преобразования измерительной информации приборы для линейных и угловых измерений делят на следующие виды штриховые приборы с нониусом (штангенинструмент) приборы с микрометрическими винтовыми парами (микрометрические инструменты) рьиажные (миниметры) зубчатые (индикаторы часового типа) рычажно-зубчатые (индикаторы) пружинные (микаторы и микрокаторы) оптикомеханические (оптиметры, оптикаторы) оптические (измерительные микроскопы, проекторы) пневматические (ротаметры) элекгро-контактные индуктивные, индукционные, фотоэлектрические радиоактивные и др.  [c.532]

Универсальные измерительные инструменты по конструктивным признакам разделяются на штриховые инструменты с нониусом — штангенииструменты и угломеры микрометрические инструменты — микрометры рычажно-механические приборы — индикаторы оптикомеханические приборы — микроскопы.  [c.74]


Смотреть страницы где упоминается термин Микроскопы измерительные рычажные : [c.834]    [c.186]    [c.164]    [c.36]    [c.517]    [c.634]    [c.197]   
Справочник технолога машиностроителя Том 2 (1972) -- [ c.516 ]



ПОИСК



Измерительные микроскопы — СМ. Микроскопы измерительные

Микроскоп

Микроскопия

Микроскопия микроскопы

Микроскопы измерительные



© 2025 Mash-xxl.info Реклама на сайте