Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия потенциальная деформаций пружин кручения

Полная потенциальная энергия U, накапливаемая пружиной кручения при деформации.  [c.932]

Вопрос о потенциальной энергии деформации при кручении излагается практически лишь для того, чтобы иметь возможность вывести формулу для изменения высоты нагруженной пружины. Все же нецелесообразно излагать его отдельно от общей теории кручения, а рассмотреть здесь до решения задач. Можно ограничиться формулой для бруса постоянного поперечного сечения при постоянном крутящем моменте, указать, что при ступенчато-переменном сечении или скачкообразно изменяющемся крутящем моменте формулу надо применять к отдельным участкам, а результаты (при вычислении энергии деформации всего бруса) суммировать.  [c.107]


Полная потенциальная энергия, накопляемая пружиной кручения при деформации,  [c.680]

Для определения осадки (изменения высоты) б пружины приравниваем работу внешней силы Р потенциальной энергии деформации кручения.  [c.252]

Кинетическая энергия точки ( изгиба, кручения, сжатия, сдвига, растяжения, пластической деформации, относительного движения, твёрдого тела...). Кинетическая энергия в нормальных координатах ( в обобщённых координатах...). Энергия в конце удара. Потенциальная энергия поля силы тяжести ( поля центральных сил, пружины..,).  [c.29]

Далее выведем формулу для определения уменьшения высоты (осадки) X пружины. Разбивая пружину на бесконечно малые участки длиной б/, которые ввиду малости длины будем считать прямолинейными, и учитывая только потенциальную энергию деформации кручения, получим  [c.232]

Формулу прогиба для пружин круглого сечения выводят из равенства работ внешней силы на осадку пружины и потенциальной энергии деформации кручения  [c.124]

Подсчитать наибольщую величину U потенциальной энергии деформации кручения проволоки в цилиндрической пружине с малым шагом витков. Пружина свита из проволоки d=8 мм, R=40 мм, /1=10 витков. Сколько витков должна иметь эта пружина для поглощения заданной энергии 7=200 кГсм Дано [т1= =4000 кГ см [c.173]

Должна лежать в соприкасающейся плоскости той кривой, по которой располагается изогнутая ось, и когДа Бине (В1пе1) ввел уравнение моментов относительно касательной, то Пуассон на основании этого уравнения пришел к заключению,-что крутящий момент постоянен. Лишь постепенно возникло представление о двух изгибающих пара в двух главных плоскостях, и был найден способ определения меры закручивания. Когда эти элементы теории были получены, стало ясно, что, зная соотношения, связывающие, изгибающие и крутящие моменты с кривизной и степенью кручения и пользуясь обычными условиями равновесия, можно определить форму изогнутой оси, степень кручения стержня вокруг этой оси, а также растягивающую и Перерезы вающую силу в любом данном сечении. Изгибающие и крутящие. пары, а также растягивающая и перерезывающая силы, происходят от усилий, приложенных к, элементам поперечных сечений, и правильные выражения для этих пар и сил следует искать при помощи общей теории. Но здесь возникает затруднение, состоящее в том, Что общие уравнения применимы лишь тогда, когда смещения малы между тем для таких тел, как спиральные пружины, смещения ни в коем случае нельзя считать малыми. КирхГоф (КтеЬЬоК) первый преодолел Это затруднение. Он показал, что общие уравнения применимы со всей строгостью к малой части тонкого стержня, все линейные размеры которой того же порядка малости, что и диаметры, поперечного сечения. Он считал, что уравнения равновесия или движения такой части можно в первом приближении упростить, пренебрегая силами -инерции и массовыми силами. Исследования, содержащиеся в теории Кирхгофа, носят в значительной своей части кинематический, характер. Когда тонкий стержень подвергается изгибу и скручиванию, то каждый его элемент испытывает деформацию, аналогичную тем деформациям,. которые имеют место в призмах Сен-Венана но соседние элементы должны непрерывным образом переходить один в Другой. Для того чтобы выразить непрерывность этого рода, необходимы некоторые условия. Эти условия принимают форму диференциальных уравнений, которые связывают относительные смещения точек малой части стержня с относительными координатами этих точек и с величинами, которые определяют положение данной части относительно всего стержня в целом. Из этих диференциальных уравнений Кирхгоф получил картину деформации в элементе стерл я и нашел выражение для потенциальной энергии, отнесенной к единице -длины, через относительное удлинение, компоненты кривизны и степень кручения. Он получил уравнения равновесия и колебаний, варьируя функцию, Выражающую энергию. В случае, когда тонкий стержень подвергается действию внешних сил, приложенных лишь иа его концах, уравнения, которыми определяется форма изогнутой оси, идентичны, как показал Кирхгоф, с уравнениями движения тяжелого твердого тела вокруг неподвижной точки. Эта теорема носит название кинетической аналогии Кирхгофа .  [c.36]



Смотреть страницы где упоминается термин Энергия потенциальная деформаций пружин кручения : [c.356]    [c.243]   
Справочник металлиста Том 1 Изд.2 (1965) -- [ c.932 ]



ПОИСК



Деформация кручения

Деформация пружины

Кручение пружин

Кручение энергия деформации

Потенциальная энергия деформаци

Потенциальная энергия деформаци при кручении

Потенциальная энергия пружин

Энергия деформации

Энергия деформации потенциальная

Энергия деформации потенциальная кручении

Энергия потенциальная

Энергия потенциальная деформации пружины



© 2025 Mash-xxl.info Реклама на сайте