Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особые задачи при изгибе балок

Заметим, что способ, который мы здесь применили, может быть распространен на более общие случаи, например на случай совместного действия касательных усилий с равномерным сжатием вдоль одной из сторон пластинки или одновременного действия касательных усилий с чистым изгибом. Последняя задача могла бы представить некоторый практический интерес в связи с поверкой на устойчивость вертикальной стенки клепаной двутавровой балки. При большой высоте балки отношение толщины стенки к ее высоте на практике иногда получается очень малым и надлежащая устойчивость достигается путем дополнительных подкреплений стенки особыми уголками жесткости. Отдельные участки стенки двутавровой балки между двумя соседними уголками жесткости следует проверять на устойчивость как независимую прямоугольную пластинку с опертыми краями. У опор эта пластинка будет находиться главным образом под действием касательных усилий и для проверки ее на устойчивость можно воспользоваться табл. 32. У середины пролета главную роль играют нормальные напряжения от изгиба и при проверке на устойчивость можно воспользоваться табл. 31 предыдущего параграфа.  [c.442]


В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]

Этот результат представляет собой случай изгиба пластинок, исиользоваиный впоследствии А. Надаи для экспериментального подтверждения приближенной теории изгиба ), предложенной Кирхгоффом. О другой интересной краевой задаче упоминается н Натуральной философии Томсона—Тэйта. Здесь сообщается по этому поводу До сих пор, к сожалению, математикам не удалось решить, а возможно, что они даже и не пытались решать, прекрасную задачу об изгибании широкой, весьма тонкой полосы (подобной, например, часовой пружине) в круговое кольцо ). Лэмб исследовал антикластический изгиб по краю тонкой полосы ) и достиг большого прогресса в решении задачи о балке ). Рассматривая бесконечно длинную балку узкого прямоугольного сечения, нагруженную через равные интервалы равными сосредоточенными силами, действующими поочередно вверх и вниз, он упростил решение двумерной задачи а для некоторых случаев получил уравнения кривых прогиба. Таким путем было показано, что элементарная теория изгиба Бернулли достаточно точна, если высота сечения балки мала в сравнении с ее длиной. При этом было также показано, что поправка на поперечную силу, даваемая элементарной теорией Рэнкина и Грасхофа, несколько преувеличена и должна быть снижена до 75% от рекомендуемого этой теорией значения. Надлежит упомянуть также и о труде Лэмба, посвященном теории колебаний упругих сфер ) и распространению упругих волн по поверхности полубесконечного тела ), а также в теле, ограниченном двумя плоскими гранями ). Он изложил также и теорию колебаний естественно искривленного стержня ). Особый интерес для инженеров представляет его и Р. В. Саусвелла трактовка колебаний круглого диска ).  [c.407]


В ряде технических задач приходится иметь дело с изгибом пластинок по цилиндрической поверхности. Если, например, пластинка оперта на прямоугольный контур, у которого одна сторона весьма велика по сравнению с другой и на пластинку действует нагрузка, распределение которой не изменяется в направлении длинной стороны контура, то в частях пластинки, удаленных от коротких сторон контура, искривленную поверхность мы можел без особых погрешностей принимать за поверхность цилиндра, образующие которого параллельны длинным сторонам контура. В таком случае мы можем при исследовании изгиба ограничиться рассмотрением одной элементарной полоски, выделяемой из пластинки двумя плоскостями, перпендикулярными к длинной стороне контура и удаленными на расстояние 1 см друг от друга (рис. 84), и привести задачу к исследованию изгиба балки-полоски прямоугольного поперечного сечения 1 X й см . При этом исследовании мы можем воспользоваться уже известными результатами, полученными для балок ( 11—13).  [c.365]

Указанный здесь прием исследования изгиба может быть с успехом применен и при других способах закрепления концов балки, а также при других законах изменения поперечного сечения. Так, например, этот метод не требует, чтобы закон изменения J вдоль оси балки представлялся одной какой-либо функцией. Весь пролет балки может распадаться на несколько участков, причем изменение сечения вдоль каждого участка может представляться особой функцией. Дальше мы увидим, что в целом ряде задач, относящихся к исследованию изгиба стержней и пластинок, применение метода Ритца дает прекрасные результаты и обеспечивает достаточную для практики точность при сравнительно небольшой вычислительной работе.  [c.206]


Смотреть главы в:

Сопротивление материалов Том 2  -> Особые задачи при изгибе балок



ПОИСК



336 —-задачи об изгибе с задачей

Задача об изгибе балки

Изгиб балок

Особые



© 2025 Mash-xxl.info Реклама на сайте