Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость и управляемость ракет

На основании законов механики производится вычисление орбит (траекторий) искусственных спутников Земли настолько точно, что предсказанные задолго текущие координаты спутника на небесной сфере хорошо совпадают с наблюдаемыми. При помощи расчетов, основанных на законах классической механики и аэромеханики, в конструкторских бюро авиационных заводов с большой точностью устанавливаются геометрические формы новых самолетов и определяются их летные характеристики (скорости на различных высотах, дальности при изменении полезной нагрузки и запасов горючего, практический потолок , устойчивость, управляемость и маневренность). Законы механики позволяют точно рассчитать траектории, скорости и дальности полета артиллерийских снарядов, баллистических ракет дальнего действия, беспилотных самолетов. Успехи нашей страны в завоевании космоса были бы невозможны без знаний механики. Всюду, где инженеру приходится иметь дело с механическими движениями, теоретическая механика дает надежную, проверенную практикой основу для правильного познания различных  [c.16]


Устойчивость и управляемость ракет  [c.102]

Придя к вьшоду, что полет на другие планеты при помощи ракеты принципиально возможен, Кондратюк приступает к уточнению ряда вопросов, связанных с полетом в космическое пространство. В своей первой рукописи он рассматривает такие вопросы, как влияние сил тяготения и сопротивления среды, выбор величины ускорения и способов отлета, устройство отдельных частей межпланетного корабля, его управляемость и устойчивость.  [c.233]

Управляемость— это способность ракеты реагировать на отклонение рулей. Управляемость и устойчивость — свойства противоположные. Однако чем устойчивей ракета, тем большие отклонения рулей требуются для ее управления. Поэтому при конструировании ракет выбирают наивыгоднейшее соотношение между устойчивостью и управляемостью.  [c.103]

В М. т. и. м. рассматриваются два класса задач определение траектории центра масс и определение движения тела перем. массы около центра масс. В ряде случаев можно найти траекторные характеристики движения центра масс, исходя из ур-ний динамики точки перем. массы. Изучение движения тел перем. массы около центра масс важно для исследования динамич. устойчивости реальных объектов (ракет, самолётов), их управляемости и манёвренности. К задачам М. т. п. м. относится также отыскание оптим. режимов движения, I. ё. определение таких законов изменения массы тела НЛП точки, при к-рых кинематич. или динамич. характеристики их движения становятся наилучшими. Наиб, эфф. методы решения таких задач — методы вариаци-онного исчисления.  [c.129]

Многие области техники используют достижения механики жидкости к газа. Авиация и кораблестроение, основными проблемами которых являются скорость, устойчивость и управляемость самолета, ходкость, устойчивость и управляемость судна, неразрывно связаны с аэродинамикой и гидродинамикой. Такая смежная с авиацией отрасль техники, как реактивная техника, не только использовала достижения предыдущей эпохи, но и поставила, главным образом, перед газовой динамикой, ряд новых задач, послуживших дальнейшему значительному развитию этой сравнительно молодой отрасли механики жидкости и газа. Так, например, конкретная задача о возвращении космического корабля или баллистической ракеты на землю через плотные слои атмосферы вызвала к жизни многочисленные исследования по борьбе с разогревом поверхности твердого тела за счет тепла, возникающего при диссипации механичес ой энергии потока вблизи поверхности тела (в пограничном слое), с плавлением или сублимацией (непосредственным испарением твердой поверхности без прохождения процесса предварительного оплавления) поверхности корпуса ракеты. Совокупность этих и многих других близких задач привела к образованию нового раздела механики жидкости и газа — аэротермодинамики. Отметим еще важное значение гидроаэродинамики и газодинамики в турбостроении и двигателестрое-НИИ, особенно в создании реактивных и ракетных двигателей. Проточные части гидротурбины, паровой и газовой турбин, реактивного двигателя, компрессора или насоса представляют собой сложные конструкции, состоящие из ряда неподвижных (направляющие аппараты) и подвижных (рабочие колеса) лопастных систем. При вращении рабочих колес составляющие их лопатки обтекаются с большими относительными скоростями водой, газом или паром. От правильного гидродинамического расчета формы профилей и конструкции лопаток рабочих колес зависит достижение требуемой мощности машины, ее высокого коэффициента полезного действия. Надо также уметь рассчитывать и лопастные направляющие аппараты водяной, воздушной или газовой 1урбины, улучшать и другие элементы проточной асти, от гидроаэродинамического совершенства которых зависит качество турбины в целом.  [c.16]


Аэродинамические сила и момент. АЭРОДИНАМЙЧЕСКАЯ ТРУБА, установка, создающая поток воздуха или др. газа для эксперим. изучения явлений, сопровождающих обтекание тел. В А. т. проводятся эксперименты, позволяющие определять силы, действующие на самолёты и вертолёты, ракеты и косм, корабли при их полёте, на подводные суда в погружённом состоянии при их движении, исследовать их устойчивость и управляемость отыскивать оптим. формы самолётов, ракет, косм, и подводных кораблей, а также автомобилей и поездов определять ветровые нагрузки, а также нагрузки от взрывных волн, действующие на здания и сооружения. В спец. А. т. исследуются нагревание и теплозащита ракет, косм, кораблей и сверхзвук, самолётов.  [c.43]


Смотреть страницы где упоминается термин Устойчивость и управляемость ракет : [c.51]    [c.146]   
Смотреть главы в:

Физические основы аэродинамики ракет  -> Устойчивость и управляемость ракет



ПОИСК



Ракета

Управляемость

Устойчивость и управляемость



© 2025 Mash-xxl.info Реклама на сайте