Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства симметрии спиновой волновой функции

Свойства симметрии спиновой волновой функции  [c.190]

Предполагая, что свойства симметрии вращательных, колебательных и электронных волновых функций известны (см. гл. 10), рассмотрим теперь свойства симметрии ядерных и электронных спиновых функций относительно преобразований группы  [c.113]

Для примера рассмотрим квантовую систему, состоящую из N одинаковых частиц. В качестве полного набора одновременно измеримых физических величин можно использовать координаты частиц г ,..., Гдг координатное представление) и, если необходимо, спиновые переменные. .., (Тдг. В квантовой механике перестановка одинаковых частиц (например, перестановка г , и г , aj) не приводит к новому состоянию, поэтому волновые функции многочастичных систем должны обладать необходимыми свойствами симметрии. Мы кратко остановимся на этом моменте, используя координатное представление.  [c.24]


Для этой спиновой функции можно использовать систему координат, фиксированную или в пространстве, или по отношению к молекуле. Первый способ особенно удобен, когда спин-орбитальное взаимодействие очень мало. В. этом случае на спиновую функцию не влияет ни одна из операций симметрии, допускаемых точечной группой молекулы (она полностью симметрична), и тип электронной волновой функции такой же, как и тип орбитальной функции. В двухатомных молекулах это соответствует случаю Ъ связи по Гунду, в котором мультиплетные уровни с данным N имеют одинаковые свойства симметрии.  [c.22]

В нерелятивистской квантовой механике волновая функция распадается на произведение двух множи-те.ией, один из которых зависит только от координат, а другой — от спиновых переменных. Ири этом свойства симметрии полной волновой функции налагают онределенные ограпичения на допустимые свойства симметрии координатной и спиновой частей. Нанример, в случае двух электронов симметричной координатной функции должна соответствовать антисимметричная спиновая функция (полный спин равен нулю), и наоборот. В случае большого числа частиц допустимые перестановочные симметрии координатной части волновой функции определяются неприводимыми представлениями группы перестановок. Связь спипа со статистикой моя ет быть иолпостью выяснена только в рамках релятивистской квантовой механики. В этом случае дипамнч. свойства частиц (т. е. структура волнового ур-пия) оказываются существенно зависящими от ее снина (см., напр., Дирака уравнения).  [c.299]

В заключение этого пункта поясним, каким образом устанавливается изотопический спин различных состояний системы нейтрон — протон. Из того, что нуклоны подчиняются статистике Ферми, следует, что волновая функция системы нуклон — нуклон должна быть антисимметричной относительно перестановки частиц. Эта волновая функция зависит от координат, проекций спинов и проекций изоспинов. При перестановке частиц переставляются все эти три сорта переменных волновой функции. Для того чтобы менять знак при такой общей перестановке, волновая функция должна быть либо антисимметричной по одному сорту переменных и симметричной по двум остальным, либо антисимметричной по каждому сорту переменных. С другой стороны, известно, что по спиновым переменным функции симметричны при суммарном спине единица и антисимметричны при суммарном спине нуль. По координатным переменным функция симметрична в состояниях с четным орбитальным моментом (S-, D-,. .. состояния) и антисимметрична при нечетном орбитальном моменте (состояния Р, Отсюда видно, что в 5-состоянии спиновая и изоспиновая части должны обладать противоположными свойствами симметрии, т. е. если суммарный спин равен единице, то изоспин равен нулю, и наоборот. В Р-сос-тоянии, напротив, обычный и изотопический спины должны иметь одинаковые значения.  [c.193]


ВЕРОЯТНОСТЬ термодинамическая характеризуется чис-ло 1 способов, которыми может быть реализовано данное состояние системы ВЗАИМОДЕЙСТВИЕ [—воздействие тел или частиц друг на друга, приводящее к изменению их движения ближнего порядка — взаимодействие между соседними частицами, составляющими вещество гравитационное — взаимодействие между любыми телами, выражающееся в их взаимном притяжении с силой, зависящей от масс тел и расстояния между ними дальнего порядка — взаимодействие между далекими частицами, составляющими вещество звеньями полимерной молекулы при случайном сближении их в процессе теплового движения) обменное — специфическое взаимное влияние одинаковых частиц, входящих в состав квантовой системы, связанное со свойствами симметрии волновой функции системы относительно перестановки координат частиц, а также приводящих к согласованному движению частиц и изменению энергии системы пондемоторное токов — механическое взаимодействие электрических токов посредством создаваемых ими магнитных полей снин-орбитальное — взаимодействие частиц, входящих в состав квантовой системы, зависящее от велггчины и взаимной ориентации их орбитального и спинового моментов импульса, а также приводящих к тонкой структуре уровней энергии системы сннн-решеточ-ное — взаимодействие орбитального магнитного момента атома с кристаллическим полем спин-спиновое — взаимодействие частиц, входящих в состав квантовой системы, обусловленное наличием у частиц собственных магнитных моментов, а также приводящих к сверхтонкой структуре уровней энергии системы электромагнитное — взаимодействие частиц, обладающих электрическим зарядом или магнитным моментом, осуществляемое посредством электромагнитного поля]  [c.226]

Характерное время эксперимента сравнивается с временем туннелирования молекулы между различными равновесными конфигурациями [112]. Например, молекула PF5 имеет 20 равновесных конфигураций. Туннелирование молекулы между этими конфигурациями происходит таким образом, что в эксперименте ЯМР все ядра фтора выглядят тождественными (молекула туннелирует), а в электроннографическом и оптическом экспериментах аксиальные атомы F отличаются от экваториальных (молекула не туннелирует, и ее группа МС изоморфна точечной группе Озь). Именно группа МС и составляет основной момент нового подхода к теории симметрии молекул, изложенного в гл. 9. Автор подробно рассматривает построение группы МС для различных классов молекул, исследует свойства преобразований молекулярных переменных и различных волновых функций под действием операций симметрии группы МС, выводит правила отбора для возмущений и переходов, вычисляет ядериые спиновые статистические веса и т. д.  [c.6]


Смотреть страницы где упоминается термин Свойства симметрии спиновой волновой функции : [c.483]    [c.206]    [c.275]    [c.380]    [c.520]   
Смотреть главы в:

Применение теории групп в квантовой механике Изд.4  -> Свойства симметрии спиновой волновой функции



ПОИСК



SU (3)-Симметрия

Волновая функция

Волновая функция симметрия

Свойства функции в(х) елп

Симметрия, свойства



© 2025 Mash-xxl.info Реклама на сайте