Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ВВЕДЕНИЕ В ОГРАНИЧЕННУЮ ЗАДАЧУ

ВВЕДЕНИЕ В ОГРАНИЧЕННУЮ ЗАДАЧУ  [c.425]

ГЛАВА VI. ВВЕДЕНИЕ В ОГРАНИЧЕННУЮ ЗАДАЧУ  [c.426]

ГЛАВА v . введение в ограниченную задачу  [c.462]

ГЛАВА VI. введение в ограниченную ЗАДАЧУ  [c.486]

Несмотря на жесткие ограничения, введенные в настоящей задаче, в практических расчетах можно большое число задач привести к рассматриваемому случаю. Действительно, соответствующим подбором коэффициентов Я, y и р легко описать некоторый закон изменения температуры в пластинке, коэффициентом а — приведенный закон изменения модулей упругости пластинки.  [c.147]


Введенное в постановку задачи ограничение на скорость разворота рулевых органов СР связано с тем, что углы их разворота велики, в связи с чем необходим учет их динамики.  [c.467]

Преобразование задачи осуществляется путем введения новой целевой функции в течение всего процесса поиска или на отдельных его этапах. Систематическая см ена целевой функции характерна для методов штрафных функций, а эпизодическая — методов скользящего допуска. Указанные методы наиболее эффективны для преобразования задач, а сами преобразования целесообразны в тех случаях, когда ограничения задачи носят нелинейный характер. В тех случаях, когда в формулировку задачи включены как нелинейные, так и линейные ограничения, нередко используется комбинированный подход. Преобразование задачи осуществляется только относительно нелинейных ограничений, т. е. исходная задача сводится к задаче с новой целевой функцией и прежними линейными ограничениями.  [c.129]

Условимся рассматривать в этом параграфе лишь трение твердых тел, причем поверхности тел свободны от смазки, иначе говоря, будем рассматривать лишь сухое трение. Трение между покрытыми смазкой поверхностями твердых тел происходит, по существу, между тонкими поверхностными слоями смазки, и поэтому трение между смазанными поверхностями следует рассматривать как трение слоев жидкости, а не как трение поверхностей твердых тел. Этим и объясняется ограничение задачи, введенное нами выше,  [c.244]

Заметим, что здесь приходится — и это лежит в существе дела — наложить ограничение на характер связей (стационарность), но автоматическое исключение работы реакций связей, которые предполагаются идеальными, и введение в рассмотрение работы только задаваемых, а не внешних и внутренних сил в ряде случаев облегчает применение теоремы к частным задачам.  [c.380]

Такое же противоречие между задачами повышения точности и быстродействия часто получается и при анализе аппаратурного решения. Например, описанная выше компенсационная схема с вибрирующими излучателями обладает высокой статической точностью, однако ее динамические свойства проигрывают из-за наличия механической следящей системы. Значительного повышения быстродействия (до десятых долей секунды) можно добиться улучшением самой следящей системы, например введением нелинейных обратных связей и т. п. Однако существование в измерительном тракте механической следящей системы все же накладывает определенные ограничения. Поэтому последнее время большое внимание уделяется созданию методов, не требующих введения в измерительный тракт механической следящей системы и поэтому обладающих повышенной динамической точностью. Рассмотрим некоторые из них.  [c.318]


В сборнике даны преимущественно чертежи с указанием оси. к как базы для отсчета размеров ирн построениях и для удобства при перечерчивании заданий. Наличие оси х как направляющей линии облегчает введение в чертеж любой информации и построение чертежей-ответов. Если же ось не показана (как эго сделано в некоторых задачах), то ее роль для отсчета размеров может быть присвоена какой-либо из прямых на данном чертеже. Все это находится в логической связи с техническими чертежами, где всегда имеет место база отсчета, хотя и не обозначаемая так, как на чертежах в начертательной геометрии. Однако ось х сохраняет и присущее ей значение линии пересечения плоскостей проекций V и Н, что имеет значение для представления пространственной картины рассматриваемого положения. Но и вне этого значения (определяемого названием ось проекций ) такая прямая является неотъемлемой составляющей каждого чертежа дли построения его по заданным размерам. При этом выбор положения оси не является ограниченным и определяется исходя из необходимости и целесообразности.  [c.5]

На итерации t из списка выбирают и решают задачу линейного программирования. Если она не имеет допустимого решения или если полученное оптимальное значение целевой функции Р/opt (X) / <(Х), то нижняя оценка остается прежней и из списка выбирают очередную задачу для решения. Если полученное решение удовлетворяет условию целочисленности (6.64) и (X)>f<(X), то полученное оптимальное решение f/opt (X) на итерации t принимают в качестве нижней оценки для последующих итераций. Если полученное оптимальное решение -задачи линейного программирования не удовлетворяет условиям целочисленности (6.64), то выбирают нецелочисленную переменную Xj и решаемую задачу разбивают на две новые задачи линейного программирования путем введения в каждую из них по одному ограничению (6.71).  [c.314]

В качестве введения в задачу о взаимодействии многофазной среды с телом oy и Тьен [742] расс.мотрели движение отдельной сферической твердой частицы вблизи стенки, обтекаемой турбулентным потоком жидкости. Теоретический анализ содержал основное уравнение движения, описывающее влияние стенки на двухфазный турбулентный поток, и решение уравнений, включающее лишь наиболее существенные процессы, которые протекают в стацпонарных условиях. Упрощенная физическая модель рассматрпвае.мых явлений представляла собой сферическую твердую частицу в полубесконечном турбулентном потоке жидкости, ограниченном бесконечно протяженной стенкой (фиг. 2.10). Размер частицы предполагался настолько малым в сравнении с раз-меро.м вихря пли микромасштабом турбулентности потока, что вклад различных пульсаций скорости был линеен. Описание характера движенп.ч потока строилось на основе данных по распределению интенсивностей и масштабов турбулентности [105, 418, 468]. Течение, особенно вблизи стенки, является анизотропным и неоднородным. Тем не менее в качестве основного ограничивающего допущения было принято представление о локальной изотропно-  [c.58]

Вернемся теперь к выявлению тех ограничений, которые связаны с введенными вьипе упрощениями в постановке задачи. Выше уже указывалось, что закрепление направления колебаний векторов Е и Н соответствует переходу от эллиптической к линейной поляризации электромагнитной волны. Постановка одномерной задачи [Е = плоских волн, в этом случае излучению с плоским волновым фронтом соответствует в оптике параллельный пучок лучей. Отклонимся от вопроса о том, сколь реально экспериментальное осуществление плоской волны, и исследуем подробнее ее свойства.  [c.28]

В данной главе рассматриваются задачи, в которых величину е,/(х) удобно изучать со статистической точки зрения. Функцию р(х) будем считать детерминированной, однако никаких серьезных дополнительных трудностей не возникает и в том случае, когда она также трактуется статистически. Предположим, что значения ф(х) (если Ej x) = d(f )/dxj) или iiieiiEj заданы на некоторой поверхности S и что требуется изучать свойства материала в ограниченной этой поверхностью области V-, форму этой поверхности и граничные условия будем считать детерминированными. Статистические вариации величины ф или BijEj могут быть включены в постановку задачи, однако введение случайных изменений в геометрию поверхности S очень сложно и представляет собой задачу, которой уделялось очень мало внимания (см. тем не менее работу Ломакина [30], в которой эта задача решается методами теории возмущений).  [c.243]



Смотреть страницы где упоминается термин ВВЕДЕНИЕ В ОГРАНИЧЕННУЮ ЗАДАЧУ : [c.428]    [c.438]    [c.442]    [c.450]    [c.34]    [c.74]    [c.338]    [c.54]   
Смотреть главы в:

Аналитические основы небесной механики  -> ВВЕДЕНИЕ В ОГРАНИЧЕННУЮ ЗАДАЧУ



ПОИСК



Введение

Задача 3 тел ограниченная

Ограничения



© 2025 Mash-xxl.info Реклама на сайте