Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Единицы измерения акустических величин

Единицы измерения акустических величин  [c.3]

ЕДИНИЦЫ ИЗМЕРЕНИЯ АКУСТИЧЕСКИХ ВЕЛИЧИН  [c.21]

Применяют абсолютные и относительные единицы измерения акустических величин. Абсолютные — это паскали для звукового давления (сокращенно Па), метры в секунду для колебательной скорости и скорости распространения звука (сокращенно м/с), метры для смещения и т. д.  [c.5]

Основными единицами для измерения акустических величин являются метр, килограмм, секунда (система МКС). Государственным стандартом для измерения акустических величии допускается также применение  [c.21]


Для этой группы величин ГОСТ 8849—58 допускает применение двух систем единиц — МКС и СГС, причем система МКС должна применяться преимущественно. Акустические единицы МКС полностью совпадают с единицами измерения однородных величин Международной системы (СИ).  [c.95]

Единицы, применяемые в области измерений акустических величин приведены в табл. 13.  [c.89]

Два государственных эталона, первичный и специальный эталоны единицы давления воспроизводят эту единицу в области измерений акустических величин. Погрешность воспроизведения 0,3 дБ и 0,3 Па, соответственно.  [c.182]

Для измерений акустических величин в соответствии с ГОСТ 8.849—58 допускалось применение систем МКС и СГС. Главной особенностью применения в акустике единиц СИ является переход от прежней единицы звукового давления — дина на квадратный сантиметр к новой единице — паскалю. Для выражения остальных акустических величин в единицах СИ применяются пересчетные коэффициенты, кратные 10.  [c.62]

Специалисты-электроакустики попадают в особенно необычную ситуацию, так как они одновременно имеют дело с электрическими и акустическими параметрами. Для электрических измерений используется практическая система, или МКСА, в то время как для измерения акустических величин, таких, как давление, колебательная скорость, плотность и т. д.,— система СГС. В результате применения разнородных систем чувствительность гидрофона, например, выражается в вольтах на дин/см . Еще-хуже обстоит дело с единицей чувствительности преобразователя в режиме излучения по току, которая обычно выражается через выходное давление дин/см , измеренное на расстоянии 1 м от преобразователя, при токе входной цепи, равном 1 А. Однако в некоторых приложениях специалисты ВМС предпочитают измерять звуковое давление на расстоянии 1 ярда вместо 1 м, вводя таким образом в один параметр все три системы единиц.  [c.23]

Международная система единиц по ГОСТ 9867—61 введена с 1 января 1963 г. Эта система связывает единицы измерения механических, тепловых, электрических, магнитных и других величин. В Международной системе единиц приняты шесть основных единиц — метр, килограмм, секунда, ампер, кельвин, моль, кандела две дополнительные единицы — радиан и стерадиан и 25 важнейших производных единиц (табл. 1-1). Более полные данные fo единицах Международной системы,применении единиц других систем и внесистемных единиц приведены в ГОСТ по отдельным видам измерений ГОСТ 7664—61 Механические единицы , ГОСТ 8550—61 Тепловые единицы , ГОСТ 8033—56 Электрические и магнитные единицы , ГОСТ 7932—56 Световые единицы , ГОСТ 8849—58 Акустические единицы .  [c.5]


Международная система СИ считается наиболее совершенной и универсальной по сравнению с предшествовавшими ей. Кроме основных единиц, в системе СИ есть дополнительные единицы для измерения плоского и телесного углов — радиан и стерадиан соответственно, а также большое количество производных единиц пространства и времени, механических величин, электрических и магнитных величин, тепловых, световых и акустических величин, а также ионизирующих излучений.  [c.496]

Система МКС для измерения механических и акустических величин с основными единицами метр, килограмм, секунда и с 22 производными единицами (16 для механических и 6 для акустических измерений) ГОСТ 7664—61, ГОСТ 8849—58.  [c.607]

СИ предусматривает установление единообразия в единицах измерения и содержит шесть основных единиц и две дополнительные. Эта система охватывает измерения всевозможных величин механических, тепловых, электрических, магнитных, световых, акустических.  [c.5]

Экспериментально установлено, что увеличение силы звука в геометрической прогрессии воспринимается слухом человека в арифметической прогрессии, поэтому для оценки воздействия звука целесообразно использовать логарифмический масштаб, применяемый и в других отраслях техники. Введение логарифмического масштаба в акустику привело к использованию новой величины, называемой акустическим уровнем, единицей измерения которой служит децибел (дБ).  [c.16]

Внесистемные единицы. До настоящего времени находили широкое применение на практике некоторые единицы, не входившие ни в одну из систем. Эти единицы были введены в разное время из соображений удобства измерений соответствующих фактических величин в различных сферах деятельности человека. Например, для измерения длины применяют ангстрем, световой год, парсек площади — ар, гектар объема — литр массы — карат давления — атмосферу, бар, миллиметр ртутного столба, миллиметр водяного столба количества теплоты калорию электрической энергии — электрон-вольт, киловатт-час акустических величин — децибел, фон, октаву ионизирующих излучений — рентген, рад, кюри.  [c.26]

Международная система единиц измерений содержит основные и дополнительные единицы. Система универсальная, так как затрагивает измерения всевозможных величин механических, тепловых, световых, электрических, акустических и магнитных. Основными единицами измерения установлены метр (м) —для измерения длины килограмм (кг) — для измерения массы вещества, секунда (се/с) —для измерения времени градус Кельвина (° К) — для измерения термодинамических температур ампер (а) —для измерения силы электрического тока свеча св) — для измерения силы света и др.  [c.200]

Международная система единиц предусматривает установление единообразия в единицах измерения и содержит семь основных единиц и две дополнительные. Эта система охватывает измерение всевозможных величин механических, тепловых, электрических, магнитных, световых, акустических. Основные, дополнительные и некоторые производные единицы приведены в табл. 1.  [c.4]

Международная система единиц содержит шесть основных, единиц и две дополнительные такое количество основных и дополнительных единиц делает систему универсальной, так как. она затрагивает измерения всевозможных величин механических, тепловых, электрических, магнитных, световых, акустических. Основными единицами установлены метр (м)—для измерения длины килограмм (кг) —для измерения массы секунда (сек.)—для измерения времени градус Кельвина (°К)—для-измерения температуры ампер (а) —для измерения силы электрического тока свеча (се)—для измерения силы света.  [c.57]

В табл. 2. 2 указаны лишь важнейшие производные единицы. Все остальные недостающие единицы для измерения механических, тепловых, электрических, магнитных, акустических, световых и других величин следует брать из Государственных стандартов на отдельные области измерения.  [c.22]


УЗ-вые волны затухают значительно быстрее, чем волны более низкочастотного диапазона, т. к. коэфф. классического поглощения звука (на единицу расстояния) пропорционален квадрату частоты. В низкочастотной области коэфф. релаксационного поглощения также растёт пропорционально квадрату частоты, однако при повышении частоты этот рост замедляется и коэфф. поглощения стремится к постоянной величине. Область, где наблюдается такое изменение хода коэфф. поглощения, наз. релаксационной, а средняя её частота — частотой релаксации. Величина, обратная частоте релаксации,— время релаксации — характеризует процесс перераспределения энергии внутри вещества. Помимо характерного хода коэфф. поглощения УЗ, в релаксационной области наблюдается рост скорости звука с частотой — дисперсия, обусловленная физич. процессами в веществе и отличающаяся от дисперсии скорости звука, характерной для любых частот и связанной с геометрич. условиями распространения волны. Дисперсия УЗ в релаксационных областях обычно не превышает нескольких процентов. В многоатомных газах релаксация связана с обменом энергии между поступательными и внутренними степенями свободы, и характерные частоты лежат в среднем и даже низкочастотном диапазонах. В жидкостях к основным релаксационным процессам относятся, напр., внутримолекулярные превращения, структурная и химич. релаксации соответствующие частоты лежат чаще всего в области частот 10 —10 Гц. В твёрдых телах имеются релаксационные процессы различной природы, обусловленные, напр., взаимодействием ультразвука с электронами проводимости, со спиновой системой (см. Спин-фононное взаимодействие), С колебаниями кристаллической решётки. Влияние этих процессов проявляется в частотной зависимости поглощения УЗ. Резонансные явления типа акустического парамагнитного резонанса (область частот 10 —11 Гц) и акустического ядерного магнитного резонанса (10 —10 Гц) дают соответствующие пики поглощения. Резонансный характер может иметь также и дислокационное поглощение в кристаллах. Все эти особенности поглощения УЗ в твёрдых телах обусловлены взаимодействием УЗ-вых и гиперзвуковых волн с внутренними возбуждениями в твёрдых телах. Возникновение же такого взаимодействия связано с тем, что средние и высокие УЗ-вые частоты становятся сравнимы с характерными частотами процессов в веществе на молекулярном и атомном уровне, а длины волн сравнимы с параметрами внутренней структуры вещества. Последнее обстоятельство объясняет также увеличение рассеяния упругих волн на УЗ-вых частотах, наблюдаемое в микронеоднородных средах, в поликристаллич. телах сечение рассеяния на неоднородностях возрастает, если их размеры становятся порядка длины волны.. Связь характера распространения УЗ и, в частности, его высокочастотной области — гиперзвука — со структурой вещества и элементарными возбуждениями в нём является одной из важнейших особенностей УЗ-вых волн. Она позволяет судить о строении вещества на основании измерений скорости и погло-  [c.11]

Амплитуды сигналов измеряют с помощью калиброванного делителя напряжения — аттенюатора . Измерение состоит в сравнении амплитуд двух или нескольких сигналов в относительных единицах— децибелах. Процесс измерения сводится к ослаблению принимаемых сигналов до некоторого установленного уровня. Величина потребовавшегося ослабления равна амплитуде поступившего сигнала. Акустический зондирующий импульс принимают за О дБ, для него требуется максимальное ослабление. Амплитуды всех других сигналов выражают в отрицательных дБ, хотя знак минус не пишут, а лишь подразумевают. Аттенюатор располагают вблизи входа приемно-усилительного тракта для того, чтобы искажение амплитуд поступивших на него сигналов было минимальным. Требуемый диапазон измерения — от О до 100 дБ.  [c.95]

Расчетные соотношения для градуировки акустической аппаратуры контроля запорной арматуры. Привязка показаний акустического прибора к величине протечки является достаточно сложной задачей. Даже при фиксированной величине и форме отверстия скорость протечки газа через него зависит от физических свойств газа и перепада давлений весьма сложным образом. Вследствие сильной зависимости плотности газа от температуры и давления измерение расхода и количества газа в объемных единицах имеет смысл только при указании его параметров. Б этом случае результаты измерений приводятся к нормальным условиям.  [c.270]

ГОСТ 8849—58 Акустические единицы , введенный с 1 января 1959 г., принимал за основу для акустических измерений систему единиц МКС (являющуюся частью СИ, относящейся к механическим величинам), допуская одновременно применение щироко распространенных при измерениях в акустике единиц системы СГС.  [c.178]

Следует особо подчеркнуть, что большинство единиц Международной системы (СИ) не являются новыми для Советского Союза. Официально принятые в СССР государственными стандартами системы механнческнх единиц МКС, электрических и магнитных единиц МКСА, тепловых единиц МКСГ, световых единиц МСС, акустических единиц МКС содержат единицы измерения, полностью совпадающие с единицами измерения однородных величин системы СИ.  [c.4]

Единицы измерения рассмотрегШых величин в системе СИ смещения - м, колебательной скорости - м/с, звукового давлегшя -Па, интенсивности - Вт/м , характериспсчес-кого и акустического импедансов - Па-с/м, механического импеданса - Н с/м.  [c.312]

Лит. ГОСТ 9867—61. Международная система единиц ГОСТ 7663—55. ОЗразование кратных и дольных единиц измерений ГОСТ 7664—61. Механические единицы ГОСТ 8033—56. Электрические и магнитные единнцы ГОСТ 8550—61. Тепловые единицы ГОСТ 7932—56. Световые единицы ГОСТ 8849—63. Акустические единицы ГОСТ 8848—63. Единицы радиоактивности и ионизирующих излучений Б у р-д у н Г. Д., Единицы физических величин, 3 изд., М., 1963 Единицы измерешга н обо.значе шя фи-зи-  [c.494]


МКС для измерения механических и акустических величин (ГОСТы 7664—61 и 8849—58) с основными единицами метр, килограмм, секунда и 22 производными единицами (16 для механических и 6 акустических измерений) МКСА для измерения электрических и магнитных величин (ГОСТ 8033—61) с основными единицами метр, килограмм, секунда, ампер и 17 производными единицами МКГС для измерения тепловых величин (ГОСТ 8550—61) с основными единицами метр, килограмм, секунда, градус Кельвина и 12 производными единицами МСС для измерения световых величин (ГОСТ 7932—56) с основными единицами метр, секунда, свеча и семью производными единицами.  [c.285]

Кроме систем преимущественного применения, действующими стандартами на единицы измерений допускается также применение системы СГС для измерения механических и акустических величин и СГСС — для электрических и магнитных величин (ГОСТы 7664—61, 8849—58 и 8033—56)  [c.285]

В лабораториях института разрабатываются и хранятся государственные эталоны единиц из-мерений, разрабатываются и совершенствуются методы точных измерений физических величин, определяются физические константы, характеристики веществ и материалов. Тематика научных работ института охватывает линейные, угловые, оптические и фотометрические измерения, измерения массы, плотности, вязкости, силы, твердости, скорости, ускорений, вибраций, давлений, вакуума, измерения температурных, теплофизических и термохимических характеристик, рН-измерения, измерения влажности, составов газов, акустические,. электрические и магнитные, радиотехнические и ионизирующих излутений.  [c.11]

Распространение ультразвуковых волн в среде сопровождается переносом энергии (единица измерения - Джоуль, J), что косвенно выражается в возникновении тепловых эффектов. Мощность акустической энергии (количество переносимой механической энергии в джоулях за единицу времени, U), измеряется вваттах(1 BT=1J- ). Акустическая энергия распределяется по площади (S), через которую распространяется и зависит от ее величины. Количество энергии на единицу площади распространения за единицу времени определяется как интенсивность (I) ультразвукового потока. Она измеряется в ваттах на квад-  [c.46]

Величину 2= роС называют удельным акустическим (волновым) сопротивлением среды. Она имеет важнейшее значение для описания распространения, излучения и отражения упругих волн. Выражение (2.7) иногда называют акус -тическим законом Ома. В самом деле, если поставить в соответствие электрическому напряжению акустическое давление, электрическому току - колебательную скорость, электрическому сопротивлению - удельное акустическое сопротивление, то можно сопоставить электрический закон Ома 11= 1К и акустический закон Ома p = vZ.B соответствии с этой аналогией единица измерения 2 получила название акустического Ома (1 акОм = 1 кг/(м с)).  [c.35]

Установлено, что большинству существенных свойств зрения, так же как и большинству существенных свойств других систем восприятия, присуща явно нелинейная связь между количеством физической энергии и психологических ощущений. Однако при зрительном определении расстояния передаточное отношение по существу равно один к одному — частично возможно из-за ассоциативной связи с аддитивными единицами измерения — дюймами и футами. Для тех ощущений человека, которые тем сильнее, чем больше величины стимулов, например, зрительной яркости, акустической интенсивности, тактильного давления и других, ощущение пропорционально мощности (обычно коэффициент пропорциональности меньше единицы), соответствующей физической энергии (Стивенс [101]).  [c.237]

В записи выражения (4. 40) уро>вень Ферми проходит приблизительно посередине запрещенной зоны, при этом предполагается, что доминирз ющим является рассеяние носителей заряда на акустических колебаниях решетки, т. е. г = 0. Измерение только полярности термо-эдс в области собственной проводимости уже позволяет определить, величина Ь = рп/цр больше или меньше единицы. А снятие температурной зависимости термо-эдс в собственной области (при известной ширине запрещенной зоны АЕ) позволяет получить оценку отношения подвижностей электрона и дырки (см. формулу (4.40)).  [c.142]


Смотреть страницы где упоминается термин Единицы измерения акустических величин : [c.286]    [c.5]    [c.4]    [c.12]    [c.137]    [c.8]   
Смотреть главы в:

Слуховая система  -> Единицы измерения акустических величин



ПОИСК



224 — Единицы измерени

Акустические величины

Акустические единицы

Акустические единицы измерения

Акустические измерения

Величины — Измерения

ЕДИНИЦЫ АКУСТИЧЕСКИХ ВЕЛИЧИН

Единица величины

Единицы измерения

Единицы измерения величин



© 2025 Mash-xxl.info Реклама на сайте