Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Операторы перехода для элементов матрицы рассеяния

Операторы перехода для элементов матрицы рассеяния  [c.20]

Соотношения (1.30), (1.31) эквивалентны обычным условиям сшивания полей. Кроме того, они учитывают и граничные условия. Конкретный вид операторов R а Т зависит от рассматриваемой дифракционной структуры и вида падающего на решетку поля. Знания введенных матричных операторов достаточно, чтобы полностью описать дифракционные свойства структуры при периодическом ее возбуждении, а также для использования структуры в качестве элементарной при решении более сложных композиционных задач методом, который известен как метод обобщенных матриц рассеяния, метод матричных операторов, операторный метод, метод декомпозиции [54, 131, 132]. В этой главе нас интересует не конкретный вид R и Т, а некоторые общие свойства этих операторов. Рассмотрим, вначале ряд энергетических свойств, характерных для элементов обобщенных матриц рассеяния. Отдельно останавливаться на отражательных структурах нет смысла, поскольку переход к ним всегда осуществим, если в (1.28) и в последующих формулах для более общего случая полупрозрачной структуры, положить Тпр = О, п = О, 1,. ..  [c.24]


Оптика атмосферы в значительной мере определяется рассеянием света на молекулах и частицах [27]. При решении задач теории рассеяния света аэрозолями принято считать, что в любом локальном объеме воздуха при нормальных условиях их можно представить как систему однородных сферических частиц различного размера. В связи с этим в пределах настоящей главы излагаются теория и численные методы решения обратных задач светорассеяния полидисперсными системами сферических частиц. Разумеется, указанная система частиц рассматривается не более как морфологическая модель (если акцентировать внимание на форме рассеивателей, играющих важную роль в подобных задачах) реальной дисперсной рассеивающей среды. Оптическое соответствие модели и среды требует надлежащей проверки, о чем подробно говорится в заключительном разделе главы. В основе аналитических построений излагаемой ниже теории лежит понятие оператора перехода, осуществляющего преобразование одного элемента матрицы полидисперсного рассеяния в другой. В результате для матрицы Мюллера, адекватно описывающей прямые задачи светорассеяния системами частиц, удается построить матрицу интегральных (матричных) операторов взаимного преобразования ее элементов.  [c.14]

В квантовой теории поля при вычислении матричных элементов матрицы рассеяния оказывается необходимым переходить от X. п, к нормальному произведению. X, п. и линейных операторов равно сумме их нормальных произведений со всеми возможными свертками (снариванинми), включая и их нормальное пронзнеденне бея сверток (теорема Вика)  [c.382]

Методы дисперсионных соотношений в теории С. в. Основные иоложения. Попыткой обойти вопрос об элементарности частиц и избежать проблемы перенормировок, возникающей нри квантово-полевом подходе (см. Перенормировка ааряда, массы), является метод дисперсионных соотношений. Основатели метода — М. Гольдбергер и И. И. Еого-любон.Е методе дисперсионных соотношений основные величины — не поля, а амплитуды переходов, характеризующие рассматриваемые процессы, т. е. величины, тесно связанные с наблюдаемыми в экспериментах. Этот метод представляет практич. реализацию программы В. Гейзенберга (1943 г.), согласно к-рой теория должна строиться без участия величин, описывающих пространственно-временную локализацию полей (нанр., ф-операторов ноля), а непосредственно для амплитуд перехода — элементов -матрицы (см. Матрица рассеяния) на основе общих принципов лоренц-инвариантности, локальности и унитарности. Эти принципы и требования перенормируемости теории в квантовой теории ноля приводят к единственно возможному лагранжиану взаимодействия я-мезонов и нуклонов  [c.526]



Смотреть страницы где упоминается термин Операторы перехода для элементов матрицы рассеяния : [c.24]    [c.74]    [c.305]   
Смотреть главы в:

Атмосферная оптика Т.7  -> Операторы перехода для элементов матрицы рассеяния



ПОИСК



Матрица перехода

Матрица рассеяния

Оператор

Оператор перехода

Оператор рассеяния

Элементы матрицы



© 2025 Mash-xxl.info Реклама на сайте