Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структурная схема и назначение блоков

Вихретоковые приборы, построенные по структурной схеме, приведенной на рис. 72, могут быть использованы как толщиномеры, структуроскопы, дефектоскопы, измерители зазоров, перемещений и т. д. Назначение прибора определяется прежде всего типом ВТП, параметрами некоторых блоков и программами.  [c.138]

Структурные схемы стационарных средств заряда с электромашин-ными преобразователями состоят из асинхронного двигателя и генератора в одно- или двухкорпусном исполнении. В статических зарядных устройствах специального назначения с неуправляемыми вентилями в схему входят силовой трансформатор 1 (рис. 3.2, а), вентильный блок 2, фильтрующее устройство 3 и нагрузка (АБ) 4. Штриховыми линиями на этом же рисунке показан дополнительный элемент — система управления 5, которая кроме перечисленных элементов 1—4 входит в схему  [c.34]


Структурная схема и назначение блоков  [c.6]

Образующая (контур) детали разбивается на отрезки прямых линий и дуг окружностей, которые кодируются в ЭВМ (определяются координаты граничных точек и точек сопряжений). Вся входная оперативная информация в закодированном виде заносится в карту исходных данных. Укрупненная структурная схема алгоритма для расчета размеров плоской заготовки, числа и размеров переходов вытяжки, разработанная Г. П. Тетериным и В. А. Жарковым, приведена на рис. 13.4. Блоки 2—5 используют для назначения по справочным данным припуска на обрезку деталей с фланцем и без него. Наличие у детали фланца определяется в блоке 5, в блоке 6 проводится расчет диаметра заготовки, в 7 — значения допустимых коэффициентов вытяжки для т-переходов. В блоках 8—16 сначала проверяют возможность вытяжки детали без фланца за один переход и необходимость обрезки припуска если оба условия удовлетворены, то рассчитывают два перехода штамповки. Если вытяжка детали без фланца за один переход невозможна, то в блоках 17—27 рассчитывают число переходов вытяжки и размеры полуфабрикатов. Далее оставляют алгоритмы по выбору прессового оборудования, учитывая, что номинальное усилие пресса должно быть примерно в 2 раза больше усилия деформирования.  [c.250]

К другой группе относятся экспериментальные поправки Атц и АЯо, объединяющие в себе целый ряд трудно рассчитываемых первичных поправок на неоднородность температурных датчиков, тепловое сопротивление прилегающих к слою участков ядра и блока (в схемах с термопарами), на паразитные тепловые мостики в слое и сквозное излучение через исследуемое вещество. Точная аналитическая оценка такого рода факторов практически невозможна, поэтому для учета их приходится предусматривать серию градуировочных опытов. Конкретные приемы градуировки зависят от схемы и назначения калориметра. На выбор их, в частности, влияют диапазон рабочих температур и давлений, природа и структурное состояние исследуемых веществ, особенности используемых температурных датчиков и требуемая точность измерений. Перечисленные факторы чаще всего оказываются взаимосвязанными. Так, от диапазона рабочих температур во многом зависят выбор и метрологические возможности температурных датчиков. В свою очередь, на форму замкнутого слоя и общее конструктивное оформление калориметра существенно влияют рабочие давления и структурное состояние исследуемых веществ.  [c.131]


Составим структурную блок-схему (рис. 18.3, в), которую рассчитываем для следующих известных значений Первый блок Рх= 0,999 (вал—червяк) Р = = 0,9999 (подшипник) Р — Рц — 0,9995 (подшипник конический) Р = 0,99999 (функциональный рабочий элемент схемы, в качестве которого выступает масло, обеспечивающее постоянную смазку пар трения и их охлаждение) Я,, = 0,5 — вероятность выполнения задачи, т. е. основного назначения редуктора при выходе из строя одного из сдвоенных конических подшипников (фактически Рц, обозначенное на рис. 18.3, в незаполненным кружком, как бы играет роль переключателя в возможном эффекте скрытого резервирования) Р = 0,9995 (один нз оставшихся работоспособных подшипников 3 или 4).  [c.377]

Унификация и нормализация проводятся в таких направлениях а) создание в пределах данного вида оборудования ряда однотипных машпн по единой структурной схеме со специализацией по назначению б) проектирование машин данного ряда по принципу сборки нз отдельных законченных нормализованных узлов (блоков) в) ограничение количества типоразмеров отдельных узлов с учетом возможности использования их в машинах другого ряда.  [c.209]

АВМ первом группы проводят математическое моделирование, расчленяя по операциям подлежащие решению уравнения, т. е. являются счетно-решающими устройствами. Они позволяют решать весьма широкий круг задач, так как содержат электронные блоки для суммирования, интегрирования, умножения, воспроизведения функций и т. п. Эти блоки можно компоновать для решения уравнений расматриваемой задачи. Разработана методика составления необходимых для этих целей структурных схем. Примерами АВМ данного типа служат МН-7М, МН-10, МН-14, ЭМУ-10, АВМ общего назначения применяются для расчетов водопроводных сетей редко.  [c.347]

В приборах второй группы предусматривается для подавления динамических помех многоинтегральная обработка цифровой информации, что позволяет производить подавление динамических помех, уменьшая их в 100-200 раз. Процесс обработки сигнала сопровождается выполнением ряда арифметических и логических операций, изменяемых в зависимости от назначения весов. Эти операции выполняются процессором, структура которого предусматривает набор типовых микропрограмм, выполнение которых индицируется блоком центрального управления. Структурная схема прибора для платформенных весов (рис. 116) содержит АЦП, БВИ и БЦУ. Основу внутренней структуры АЦП составляют входные цепи (ВЦ) 2, нуль-орган б, реверсивный счетчик импульсов 7, связанный с ним линейный декодирующий преобразователь (ДЦП) 1 и генератор импульсов 5. Эти узлы составляют классический преобразователь напряжения в код компенсационного типа со следящим уравновешиванием. Во входной цепи образуется сигнал Д /, равный разности входного напряжения Ну. и выходного напряжения ЛДП, соответствующего коду реверсивного счетчика. В зависимости от знака Д / нуль-орган через узел управления АЦП включает реверсивный счетчик в режим сложения или вычитания входных импульсов, непрерывно поступающих от генератора. При этом код счетчика изменяется так, что напряжение I7J становится равным 4-  [c.152]

Весоизмерительные системы различного назначения, имея сходную структуру, отличаются в основном функциями, выполняемыми блоками управления вторичной аппаратуры. Аппаратная реализация различных функциональных задач значительно усложняет унификацию весоизмерительных устройств. Эта задача проще решается программными методами управления на основе использования микропроцессоров. Применение микропроцессоров оказывается весьма эффективным при автоматизации технологических процессов приготовления различных смесей. При этом обеспечиваются высокие производительность и качество процесса. Структурная схема системы управления производством кормовых смесей [25] приведена на рис. 118. Исходные материалы из закромов (до 12 компонентов) двухскоростными шнеками подаются в бункер тензометрических весов. При включении электропневматического затвора взвешивания порция за 5—10 с высыпается в смеситель. Готовая смесь выгружается в бункер. Аналого-цифровой преобразователь установлен непосредственно на бункере весов, благодаря чему сигнал в цифровой форме может передаваться на большое расстояние в микроЭВМ. Последняя получает также информацию о состоянии технологического оборудования от конечных выключателей, поворотных указателей, индикаторов уровня в закромах и т.д. Устройство сопряжения нормализует выходные сигналы и направляет их параллельно на входы микроЭВМ, которая выдает операвдюнные команды для технологического оборудования. Оператор может вводить команды в микроЭВМ с по-  [c.156]


При анализе реальных конструкций и их кинематических схем выявляются либо дополнительные подвижности И/ , либо избыточные структурные связи q относительно основной схемы механизма с заданным числом степеней свободы U/.i. Из дополнительных подвижностей выделяют местные подвижности звена и местные подвижности группы звеньев W,. Местную подвижность имеют [1лавающие оси, втулки и пальцы, кольца некоторых типов подшипников, блоки, шкивы, ролики в кулачковых механизмах и т. п. Особенность местной подвижности звена заключается в том (см. рис. 2.11, а), что реализация ее не вызывает перемешения остальных звеньев механизма. Местная подвижность звена имеет определенное функциональное назначение, ибо она позволяет, например, уменьшать износ элементов кинематической пары, улучшить условия смазки, повысить коэффициент полезного действия (к.п.д.), надежность, долговечность узлов машин. Общее число местных подвижностей звеньев в кинематической цепи следует выявлять на первоначальной стадии структурного анализа и синтеза механизма.  [c.53]


Смотреть страницы где упоминается термин Структурная схема и назначение блоков : [c.107]   
Смотреть главы в:

Дистанционное управление кранами  -> Структурная схема и назначение блоков



ПОИСК



Блок Назначение

Блоки Структурные схемы

Схема назначение

Схема структурная



© 2025 Mash-xxl.info Реклама на сайте