Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость равновесной формы конструкции

ПРОДОЛЬНЫЙ ИЗГИБ 103. УСТОЙЧИВОСТЬ РАВНОВЕСНОЙ ФОРМЫ КОНСТРУКЦИИ  [c.480]

Большой практический интерес представляют задачи устойчивости предварительно напряженных стержневых элементов конструкций. На рис. 3.3 тонкой линией показан прямолинейный стержень, который был нагружен силой Р (следящей или мертвой ), а затем шарнирно закреплен. После этого стержень был нагружен распределенной нагрузкой q (следящей или мертвой ) при расчете таких конструкций требуется определить критическую нагрузку q, при которой стержень может потерять устойчивость. Штриховыми линиями на рис. 3.3 показаны (качественно) возможные равновесные формы осевой линии стержня после потери устойчивости.  [c.94]


Расчет на устойчивость стержневых систем сводится к определению критических сил, превышение которых вызывает переход системы из одного равновесного состояния в другое. Такой переход весьма часто приводит к разрушению конструкции или другим формам аварий, поэтому крайне нежелателен и для практики важно знание определенного спектра критических сил и соответствующих им форм потери устойчивости.  [c.179]

Основное практическое применение в анализе устойчивости конструкций находит концепция устойчивости механических систем, восходящая к Эйлеру. С состоянием устойчивости системы связывается возможность существования для нее при заданном Р только одной формы равновесия напротив, в состоянии неустойчивости в тех же условиях система характеризуется наличием нескольких, так называемых смежных форм равновесия, соответствующих бесконечно близким значениям функционала П. Иными словами, для состояния неустойчивости нагруженной системы характерно ветвление или бифуркация форм равновесия. Очевидно, что в рамках концепции Эйлера задача анализа всевозможных равновесных состояний системы на устойчивость эквивалентна задаче определения точек бифуркации системы в пространстве параметров, определяющих ее состояния (нагрузки, частоты возбуждающих колебаний и т. п.).  [c.108]

В монографии представлены результаты теоретических и численных исследований, выполненных авторами в области механики и вычислительной математики слоистых тонкостенных анизотропных оболочек, а также неклассическая математическая модель нелинейного деформирования тонкостенных слоистых упругих композитных пластин и оболочек, отражающая специфику их механического поведения в широкой области изменения нагрузок, геометрических и механических параметров, структур армирования. Предложен и реализован эффективный метод численного решения краевых задач неклассической теории многослойных оболочек, основанный на идеях инвариантного погружения. Получены решения задач начального разрушения, устойчивости, свободных колебаний слоистых конструкций распространенных форм — прямоугольных и круговых пластин, цилиндрических панелей, цилиндрических и конических оболочек. Дана оценка влияния на характеристики напряженно-деформированного состояния и критические параметры устойчивости таких факторов, как поперечные сдвиговые деформации, обжатие нормали, моментность основного равновесного состояния, докритические деформации. Проведены систематические сравнения полученных решений с решениями, найденными при использовании некоторых других известных в литературе неклассических моделей, в том числе и в трехмерной постановке.  [c.2]


Тонкостенные конструкции типа пластин и оболочек широко применяют в современной технике — авиаци и, судостроении, строительстве. Задачи статистической динамики таких конструкций связаны с проблемой устойчивости равновесных форм и закритического деформирования. Исследование случайных колебаний оболочек в закритической стадии ь<ожет быть выполнено, например, путем линеаризации исходных уравнений движения в окрестности прощелкнутого состояния. При этом динамическое поведение конструкций существенно зависит от статистических характеристик закритических деформаций.  [c.197]

Пусть система типа изображенной на рис. 18.60 выступает в роли идеализированной расчетной схемы некоторой конструкции. Так как при всякой нагрузке из интервала р <.р< р такая система в принципе может иметь два равновесных положения, устойчивых в малом, то границу устойчивости первоначальной формы равновесия конструкции, казалось бы, следует установить на уровне нижней критической нагрузки. Однако, как ясно из предыдущего, переход системы из одного положения равновесия в другое, не смежное с ним, требует, вообще говоря, больщих случайных воздействий, вероятность которых обычно невелика. Поэтому границей устойчивости конструкции принято считать не нижнюю критическую нагрузку идеальной системы, а верхнюю критическую, полученную для неидеальной систе.мы с заданным из каких-либо соображений уровнем несовершенств (см. конец раздела 4).  [c.406]


Смотреть страницы где упоминается термин Устойчивость равновесной формы конструкции : [c.42]    [c.322]    [c.33]   
Смотреть главы в:

Руководство к практическим занятиям по сопротивлению материалов Издание 3  -> Устойчивость равновесной формы конструкции



ПОИСК



Равновесные формы

Устойчивость конструкции

Устойчивость формы



© 2025 Mash-xxl.info Реклама на сайте