Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гранаты редкоземельные

Для теоретической интерпретации результатов по ферромагнитному резонансу и анизотропии редкоземельных ферритов-гранатов необходим одновременный учет расщепления уровней ионов под действием кристаллического поля, спин-орбитального и обменного взаимодействий, которые подчас являются величинами одного порядка. В настоящее время информация об электронных уровнях ионов редкоземельных элементов еще недостаточна для надежной теоретической интерпретации результатов.  [c.716]


Таблица 29.15. Температура Кюри, температура компенсации [119] и намагниченность насыщения [120] редкоземельных ферритов-гранатов при температуре 295 К Таблица 29.15. <a href="/info/16477">Температура Кюри</a>, температура компенсации [119] и <a href="/info/16494">намагниченность насыщения</a> [120] редкоземельных ферритов-гранатов при температуре 295 К
Таблица 29.16. Значения констант анизотропии различных редкоземельных ферритов-гранатов [119] Таблица 29.16. Значения <a href="/info/319203">констант анизотропии</a> различных редкоземельных ферритов-гранатов [119]
Рис. 42. Схемы основных лазерных переходов н редкоземельных нонах, введенных в структуру типа граната Рис. 42. <a href="/info/538964">Схемы основных</a> лазерных переходов н редкоземельных нонах, введенных в структуру типа граната
Как видно из рис. 43, катионы в кристаллической решетке граната могут находиться в трех типах узлов /, 2, 3, вокруг которых расположены с различной координацией кислородные ионы, образующие, в свою очередь, кубическую объемно центрированную плотную упаковку. Ионы могут занимать в ячейке типа граната 16 октаэдрических а-мест и 24 тетраэдрических -места, а редкоземельные ионы — 24 додекаэдрических с-места.  [c.76]

Твердотельные и жидкостные лазеры. Активной средой твердотельных лазеров являются кристаллы и стекла, содержащие в качестве активных примесей ионы переходных металлов (например, Сг), редкоземельных элементов (например, N l), актинидов (например, U). К ним предъявляются требования высокой прозрачности, однородности свойств, механической прочности и стойкости к излучению. Основным способом энергетической накачки является оптический. В качестве примера приведем лазеры на рубине и на алюмо-иттриевом гранате.  [c.341]


Основные параметры редкоземельны ортоферритов и СЛОЖНЫ феррит гранатов  [c.486]

Параметры простых редкоземельных гранатов  [c.486]

Рис. 4. Зонтичная структура магнитных моментов редкоземельных ионов в ферритах-гранатах. Показаны кристаллографические направления, номера в скобках обозначают неэквивалентные кристаллографические позиции. Рис. 4. Зонтичная структура <a href="/info/378714">магнитных моментов редкоземельных ионов</a> в ферритах-гранатах. Показаны <a href="/info/16496">кристаллографические направления</a>, номера в скобках обозначают неэквивалентные кристаллографические позиции.
Гранаты. Редкоземельные соединения со структурой типа граната (кубическая симметрия) являются в настоящее время наиболее перспективным классом материалов твердотельной квантовой электроники. Общая формула их AaBjOj,, где А — ион иттрия или ионы некоторых редкоземельных элементов, а В — ионы алюминия, галлия, железа или некоторых других трехвалентных элементов переходной группы железа.  [c.76]

Поведение величины Ms в зависимости от температуры и поля может носить более сложный характер, чем в ферромагнетиках, так как характер изменения Мл и. Иа с температурой и с полем может быть различным. Так, при повышении температуры может быть монотонное уменьшение Ms и обращение A Is в нуль в точке Кюри Тс, выше которой вещество парамагнитно, хотя па-рамашитная восприимчивость изменяется с температурой по закону, отличающемуся от закона Кюри для простых парамагнетиков. При повышении температуры в области ниже Тс возможно также увеличение спонтанной намагниченности в определенном температурном интервале, Для некоторых ферритов, в частности для многих редкоземельных ферритов — гранатов (см. табл. 29.15 и рис, 29.22), существует температура компенсации Гкомп. при которой намагниченности подрешеток становятся одинаковыми и результирующая намагниченность обращается в нуль. Появление точки компенсации возможно также при изменении состава ферримагнетика. например в иттрий-железо-галлиевых гранатах.  [c.707]

Оптические и магнитооптические свойства. Ферриты обладают сравнительно высокой прозрачностью в ряде участков ближнего и далекого инфракрасного спектров. Ферриты-гранаты характеризуются лучшей прозрачностью, чем ферриты-шпинели. Так, в иттриевом феррите-гранате имеются окна прозрачности при длинах волн K>L<0,1 мм и 1<л<10 мкм между двумя этими областями наблюдается сильное решеточное поглощение. В редкоземельных ферритах-гранатах в первой области прозрачности могут наблюдаться поглощение при ферромагнитном резонансе (если поле анизотропии велико) в случае обменного резонанса редкоземельной подрешетки в поле железных подрешеток, а также электронные переходы между уровнями основного мультиплета редкоземельных ионов. Во второй области наблюдаются электронные переходы в редкоземельных ионах и (при более коротких длинах волн) электронные переходы в ионах яселеза в октаэдрических и тетраэдрических позициях. Ферриты-гранаты в видимой и ближней инфракрасных областях спектра обнаруживают значительный эффект Фарадея при распространении света вдоль вектора намагниченности и примерно такой же по модулю эффект Коттона — Мутона (магнитное линейное двупреломле-ние) при распространении света перпендикулярно вектору намагниченности fl09—110].  [c.708]

Интерес к структуре граната значительно возрос после синтеза ферримагнитных гранатов типа MsFesOis, где — ион редкоземельного металла или иттрия.  [c.716]

Магнитные свойства и намагниченность насыщения. В гранатах в отличие от ферритов со структурой шпине-ля были введены в рассмотрение три магнитные подре-шетки. Наиболее сильное антиферромагнитное взаимодействие, определяющее температуру Кюри Тс, осуществляется между ионами трехвалентного железа в октаэдрической 16а- и тетраэдрической 24 -подрешетках. Подрешетка редкоземельных ионов 24с наиболее сильно связана отрицательным обменным взаимодействием с тетраэдрической подрешеткоД (в гранатах с легкими редкоземельными ионами от Рг до Sm — октаэдрической подрещеткой), причем эта связь примерно в 10 раз слабее, чем (а — d)- взаимодействие. Намагниченность насыщения Ms в случае тяжелых редкоземельных гра-  [c.716]


Ферромагнитный резонанс и анизотропия. Ферриты-гранаты имеют меньшую удельную намагниченность, чем ферриты-шпинели, и большой интерес к ним был вызван в основном их уникальными свойствами в СВЧ-диапазо-пе. Минимальные значения ширины линии ферромагнитного резонанса АН 16 А/м (0,2 Э) были получены в ттриевом феррите-гранате, свободном от примесей редкоземельных ионов.  [c.716]

Магнитострикцня. Магнитострикция редкоземельных ферритов-гранатов линейно связана с концентрацией редкоземельных ионов и сильно возрастает при понижении температуры. Рекордные значения Ящ = 2420 lQ-< и Л оо= 1200-10 в поле напряженностью Н= 2000 кА/м при температуре 4,2 К были получены в тербиевом феррите-гранате, что сравнимо по порядку с магнитострик-цией редкоземельных металлов.  [c.716]

Когда подобраны активный ион и матрица, следует рассмотреть диаграмму состояний, которая показывает, что получается в результате взаимодействия двух (и более) веществ. В твердотельной электронике в качестве активной среды применяют сложные оксиды (например, 5 А12О,, X 3 У,Оз — гранат), так как они обладают высокими прозрачностью в нужном диапазоне длин волн, теплопроводностью и температурой плавления, а также отсутствием взаимодействия с агрессивными средами. При выборе оптимального состава активной среды необходимо учитывать изоморфное замещение с минимальным искажением кристаллической решетки матрицы ее ионов ионами редкоземельного элемента и метод выращивания монокристаллов.  [c.58]

Лазерные переходы некоторых ионов редкоземельных элементов, введенных в решетку алюмоиттриевого граната, показаны на  [c.71]

Как следует из критериев изоморфизма, ионы редкоземельных элементов вследствие их больших размеров не могут быть введены в решетку оксида алюминия. Попытки преодолеть эти затруднения привели к исследованию соединений типа LaMgAlllOlв, характерных, как это следует из диаграмм состояний (см. рис. 39—41), для первой группы редкоземельных элементов (Ба, С1 и Рг). Такие соединения имеют гексагональные решетки, допускают легирование ионами неодима и характеризуются высоким коэффициентом теплопроводности. Технология выращивания кристаллов в настоящее время разрабатывается и в будущем они могут стать конкурентоспособными по сравнению с таким материалом, как гранат.  [c.75]

Использование в качестве активатора ионов хрома позволяет на переходах Е, р2 Аа создавать перестраиваемые лазеры в красной и ближней инфракрасной областях спектра. В решетку граната можно изоморфно вводить до 100% активаторных ионов некоторых редкоземельных элементов, например Ег + или Но +, что способствует созданию лазеров, генерирующих излучение с длиной волны около 3 мкм. Эти лазеры открывают новые возможности в лазерной хирургии и инженерной биологии. Трехподрешеточная структура граната позволяет изоморфно вводить ионы элементов практически всех групп периодической системы, что при условии сохранения локальной электронейтральности обеспечивает необходимое окружение активаторных центров. Монокристаллы гранатов выращивают методами Чохральского и Багдасарова.  [c.77]

Иттриево-алюминиевый гранат. Кристалл YgAljOia активируют ионами неодима, а также двойными примесями — Сг , Но + — и др. При введении неодима последний замещает в решетке граната трехвалентный иттрий. Наиболее интенсивная линия в сйектре люминесценции при температуре 77° К наблюдается при основной волне 1,0648 мкм,. Время жизни метастабильного состояния при концентрации Nd + около 3% составляет 200 мксек. Кристаллы с трехвалептными редкоземельными ионами имеют относительно узкие полосы поглощения, что затрудняет процесс накачки. Для повышения эффективности накачки вводят дополнительные элементы (сенсибилизаторы), передающие свою энергию возбуждения ионам-активаторам. Например,  [c.221]

Для изготовления подложек используют монокристаллы редкоземельных немагнитных гранатов (табл. 47). Наиболее употребительны галлиевые редкоземельные гранаты НзОазО (где Н — редкоземельный элемент), в частности, галлиевый гранат ОбзОазО з.  [c.489]

Как правило, структуры Ф. характеризуются наличием двух или более разд. катионных позиций. Эти позиции могут быть заняты как ионами переходных и редкоземельных элементов, так и диамагн. ионами, не обладающими магн. моментами. При этом одинаковые ионы могут находиться в разных позициях, и наоборот, по одинаковым позициям могут быть распределены (хаотично или упорядоченно) разд. ионы. Наиб, хорошо изучены и нашли широкое применение в технике ферриты — оксидные Ф. с кубич. структурой типа нтинели и граната и нек-рыми гексагональными структурами. Известны ферримагн. кристаллы, в к-рых анионами являются сера, фтор и др. так, RbNiFj — гексагональный Ф., в к-ром из шести магн. под-решёток намагниченность четырёх направлена в одну сторону, а двух других—в противоположную (подобные фториды прозрачны в видимой области спектра).  [c.290]

Кроме ферромагн. типа колебаний существует Л —1 (где N—число подрешёток) обменных типов колебаний, резонансные частоты к-рых при малых лежат обычно в ИК-диапазоне. Хотя интенсивности возбуждения их малы (пропорциональны квадратам разностей g-факторов подрешёток), соответствующие этим типам колебаний максимумы поглощения в ИК-диапазоне были обнаружены в редкоземельных ферритах со структурой граната.  [c.292]

Многие Ф.-гранаты обладают рядом уникальных свойств капр., в ЖИГ ширина линии магнитного резонанса составляет величину порядка 10 Тл, так что добротность резонатора может достигать неск. тысяч. Эпитаксиальные плёнки Ф.-гранатов являются одним из лучших материалов для устройств с цилиндрическими магнитными доменами, нек-рые из них прозрачны и имеют большой угол фарадеевского вращения (см. Магнитооптика). При низких темп-рах Ф.-гранаты обладают большой магнитной анизотропией, обусловленной редкоземельными ионами, и значит, магнитострикцией в них удаётся возбудить бегущие спиновые волны и наблюдать рассеяние света на спиновых волнах.  [c.293]


ЦМД) — разновидность ферро.нагнитных доменов изолированные однородно намагниченные области в магнитной п.гёнке (или в тонкой магн. пластинке), имеющие форму круговых цилиндров и направление намагниченности, антипараллельное намагниченности остальной части плёнки. Для образования ЦМД необходимо наличие у магн. плёнки достаточно большой магнитной анизотропии, причём ось лёгкого намагничивания (ОЛИ) должна быть перпендикулярна поверхности плёнки. Материалы, в к-рых могут образовываться ЦМД, наз. ЦМД-материала-м и. К ним относятся монокристаллич. плёнки ферритов-гранатов, аморфные плёнки интерметаллич. соединений редкоземельных и переходных- металлов, ортоферриты, гексаферриты и др.  [c.434]

К причинам уширения линии ФМР (как и в описанных ЯМР и ЭПР) относят спин-спино-вый и спин-решеточный механизмы релаксации. Наиболее узкая линия ФМР в совершенных монокристаллах (А// = 42,2 А/м) зарегистрирована в соединении УзРе50[2 (иттрие-вый феррит со структурой граната). Кроме влияния дефектов, в этом кристалле ширина линии ФМР определяется дипольным (магнитостатическим) взаимодействием и магнито-стрикцией. При введении редкоземельных примесей наблюдается максимум на кривой температурной зависимости ширины линии и анизотропия спектра ФМР изменение ширины линии в зависимости от ориентации оси легкого намагничивания кристалла.  [c.182]


Смотреть страницы где упоминается термин Гранаты редкоземельные : [c.524]    [c.361]    [c.653]    [c.870]    [c.71]    [c.71]    [c.191]    [c.242]    [c.485]    [c.10]    [c.678]    [c.693]    [c.9]    [c.9]    [c.11]    [c.21]    [c.545]    [c.486]    [c.50]    [c.50]    [c.286]    [c.293]    [c.226]    [c.339]   
Материалы в приборостроении и автоматике (1982) -- [ c.486 , c.488 , c.490 ]



ПОИСК



Гранато



© 2025 Mash-xxl.info Реклама на сайте