Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение первой основной задачи для бесконечной плоскости с круговым отверстием

Решение первой основной задачи для бесконечной плоскости с круговым отверстием ). Эту задачу можно решить методом, совершенно аналогичным методу 54. Однако для разнообразия мы решим ее, применяя граничное условие в виде (23) 41.  [c.190]

Решение первой основной задачи для бесконечной плоскости с эллиптическим отверстием ). В этом случае мы воспользуемся отображением рассматриваемой области на область ] С] > 1, т. е. на бесконечную плоскость с круговым отверстием ).  [c.303]


ОБЩЕЕ РЕШЕНИЕ ОСНОВНОЙ ЗАДАЧИ ПЕРВОГО ТИПА ДЛЯ БЕСКОНЕЧНОЙ ПЛОСКОСТИ С КРУГОВЫМ ОТВЕРСТИЕМ  [c.296]

В шестой главе изучается первая основная задача для системы криволинейных разрезов в эллиптической пластине и круговом кольце. При использовании известного общего решения задач для указанных областей без трещин (в виде степенных рядов) понижается порядок исходной системы интегральных уравнений за счет тождественного удовлетворения условий на внешней границе тела. Аналогичное преобразование исходной системы сингулярных интегральных уравнений проведено в седьмой главе для произвольной области с круговым отверстием при использовании общего решения (в квадратурах) задачи для бесконечной плоскости, содержащей круговое отверстие. Подобный прием использован также при рассмотрении составной двухкомпонентной кольцевой пластины с трещинами.  [c.4]

Отметим еще, что, как показал Л. А. Галин [3], метод комплексного-представления решений в соединении с конформным отображением дает возможность получить точное решение первой основной граничной задачи для бесконечной плоскости с круговым отверстием и в тех случаях, когда часть тела, полностью охватывающая отверстие, испытывает пластическую деформацию. Некоторые точные решения для такой же области при иных условиях нагружения приведены в монографии Г. Н. Савина [8].  [c.334]

Методом, указанным в п. 5.3.2, Н. И. Мусхелишвили дал простое решение первой и второй основных задач для круга, кругового кольца и бесконечной плоскости с круговым отверстием. Было разобрано множество частных примеров для различного вида внешних воздействий. Для областей подобного рода, разумеется, не требуется предварительное конформное отображение. Применив конформное отображение, Мусхелишвили решил трудную по тому времени задачу о равновесии сплошного эллипса. Позже эту же задачу решал Д. И. Шерман другим приемом (см. п. 5.3.6).  [c.56]

Основные граничные плоские и антиплоские задачи теории упругости для многосвязной области, содержащей криволинейные разрезы и отверстия произвольной формы, сведены в работах [94—96] к системе сингулярных интегральных уравнений первого рода по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. При этом предполагалось, что контуры разрезов и отверстий не пересекаются между собой (см. параграф 3 данной главы). Краевые трещины рассматривались только в некоторых частных случаях граничного контура (окружность, прямая), когда удается построить модифицированные сингулярные интегральные уравнения, не содержащие искомых функций на этом контуре [70, 95]. В последнее время изучались также задачи в случае произвольной симметричной области с краевой трещиной, находящейся на оси упругой и геометрической симметрии [27, 53, 58, 104] (см. также параграфы 3—5 четвертой главы). Ниже, следуя работе [97], приводятся обобщения указанных выше результатов на общий случай многосвязной области с разрезами и отверстиями, когда разрезы одним или двумя концами могут выходить на внешнюю границу и контуры отверстий. Получены численные решения построенных интегральных уравнений при одноосном растяжении бесконечной плоскости с одним или двумя круговыми отверстиями, на контуры которых выходят радиальные трещины.  [c.33]


Аналогично предыдущему параграфу записывается система N + 1 сингулярных интегральных уравнений для бесконечной плоскости, ослаблен1юй круговым отверстием и N криволинейными разрезами. На граничной окружности заданы напряжения. При использовании решения первой основной задачи для бесконечной плоскости с круговым отверстием одна из Л/ + 1 неизвестных функций исключается и задача приводится к системе N сингулярных интегральных уравнений на разомкнутых контурах. Изучается также система тренщн при нал 1чии циклической симметрии. Подобным образом может быть рассмотрена задача о криволинейных разрезах в бесконечной плоскости с круговым отверстием, когда на граничной окружност заданы смеа].ения.  [c.164]

К настоящему времени решены уже многие плоские задачи о напряженно-деформированном состоянии тел с отверстиями и трещинами, однако в основном они касаются случаев неограниченных областей (плоскость, полуплоскость, полоса). Изучение таких задач было начато Бови [135] и развито затем другими исследователями [И. 29, 30, 45, 65, 70, 95]. Данная глава посвящена решению задач об упругом равновесии конечной многосвязной области с трещинами и отверстиями, среди которых имеется хотя бы одно круговое. При этом, как и в предыдущей главе, понижен порядок исходной системы сингулярных интегральных уравнений при использовании общего аналитического решения первой основной задачи для бесконечной плоскости с круговым отверстием. Указанный подход позволяет более эффективно решать задачи для многосвязных областей различных внешних очертаний, ослабленных трещинами и круговым отверстием. При этом сравнительно легко могут быть рассмотрены случаи действия сосредоточенных или разрывных нагрузок на круговом граничном контуре, а также трещины, выходящие на край указанного отверстия.  [c.183]


Смотреть страницы где упоминается термин Решение первой основной задачи для бесконечной плоскости с круговым отверстием : [c.314]    [c.330]   
Смотреть главы в:

Некоторые задачи математической теории упругости Изд5  -> Решение первой основной задачи для бесконечной плоскости с круговым отверстием



ПОИСК



Бесконечная плоскость с отверстием

Задача основная

Задача п тел на плоскости

Задача первая

Круговое отверстие в бесконечной плоскости

Общее решение основной задачи первого типа для бесконечной плоскости с круговым отверстием

Основные задачи

Отверстие основное

Плоскость основная

Пример. Решение первой основной задачи для бесконечной плоскости с круговым отверстием

Решение основное

Решение первой задачи

Решение первой основной задачи



© 2025 Mash-xxl.info Реклама на сайте