Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость, путь, время и ускорение при прямолинейном движении

СКОРОСТЬ, ПУТЬ, ВРЕМЯ и УСКОРЕНИЕ ПРИ ПРЯМОЛИНЕЙНОМ ДВИЖЕНИИ  [c.112]

Пример 105. На материальную точку, совершающую прямолинейное движение, действует сила F, равномерно убывающая с течением времени и по истечении Т сек обращающаяся в нуль. Какой скорости достигнет точка по истечении Т сек и какой путь она пройдет за это время, если п начальный момент (/ 0) скорость точки равна нулю, а ее ускорение равно (рис. 141)  [c.247]


Выше мы ввели понятия скорости и ускорения для прямолинейного движения. Обобщим эти понятия и на случай криволинейного движения. Пусть точка за время переместилась по траектории из положения s t) в положение + Пройденный ею путь А/ по кривой линии в общем может не совпадать  [c.23]

Уравнение y=f x) какой-нибудь линии С) только тогда в верных пропорциях изображает эту линию (С), когда абсциссы и ординаты берутся в одинаковых масштабах. В механике при построении графиков расстояний, скоростей и ускорений приходится иметь дело с величинами разных наименований. Например, при построении графика расстояний по формуле s=/(/) на одной из осей придётся откладывать длину, а на другой — время, причём время изображать длиной можно лишь символически при построении графика скоростей по формуле v = f t) на одной из осей придётся откладывать скорость, а на другой — время, причём и скорость и время можно изображать длинами лишь символически. Чтобы из непосредственного измерения на чертеже мы могли получить верный ответ, мы должны изображаемые количества измерять одним масштабом, т. е., например, единицу пути и единицу времени изображать отрезками одинаковой длины, единицу скорости и единицу времени изображать отрезками одинаковой длины и т. д. Но на практике от этого приходится часто отступать так, с необходимостью применения разных масштабов мы встретились в 69, в примере 42. Если для построения графика приняты разные масштабы, то для получения верных ответов всякое измерение на графике должно быть соответственно подправлено. Чтобы пояснить изложенное на примере, рассмотрим прямолинейное равномерное движение точки и предположим, что в 12 сек точка прошла путь длиною в 60 м. Если мы возьмём одинаковые масштабы, т, е., например, будем изображать графически 1 сек времени отрезком длиною ъ см и м пути также отрезком в 1 то из чертежа будем  [c.262]

По прямолинейному железнодорожному пути с углом наклона а = 10° вагон катится с постоянной скоростью. Считая сопротивление трения пропорциональным нормальному давлению, определить ускорение вагона и его скорость через 20 с после начала движения, если он начал катиться без начальной скорости по пути с углом наклона р = 15°. Определить также, какой путь пройдет вагон за это время.  [c.203]

В качестве второго примера рассмотрим материальную точку в виде маленького шарика с массой т, помещенную в гладкую прямолинейную трубку, вращающуюся с постоянной угловой скоростью ш вокруг оси, перпендикулярной к центральной линии трубки. С точки зрения наблюдателя, движущегося вместе с вращающейся системой отсчета, на шарик действует прежде всего центробежная сила, поэтому шарик будет двигаться ускоренно вдоль трубки по направлению от центра вращения. Кроме того, на шарик действует кориолисова сила 2ти У, где V есть относительная скорость шарика в рассматриваемый момент времени кориолисова сила прижимает шарик к стенке трубки, которая, в свою очередь, действует на шарик с равной, но противоположно направленной силой. Кинетическая энергия шарика с точки зрения наблюдателя, движущегося вместе с вращающейся системой отсчета, все время возрастает за счет работы, совершаемой центробежной силой. Кориолисова сила перпендикулярна к пути шарика и поэтому не совершает никакой работы. В абсолютной системе отсчета шарик в радиальном направлении совершенно свободен, тем не менее его кинетическая энергия все время возрастает, но на этот раз за счет работы той силы реакции, с которой стенка трубки действует на шарик эта сила, вызывающая в абсолютном движении  [c.458]


РАВНОМЕРНОЕ ДВИЖЕНИЕ, движение точки, при к-ром численная величина её скорости постоянна. Путь, пройденный точкой при Р. д. за промежуток времени t, равен s=vt. Тв. тело может совершать поступательное Р. д., при к-ром всё сказанное относится к каждой точке тела, равномерное вращение вокруг неподвижной оси, при к-ром угловая скорость тела ш постоянна, а угол поворота тела ф= oi, и равномерное винтовое движение. РАВНОПЕРЕМЕННОЕ ДВИЖЕНИЕ, движение точки, при к-ром её касательное ускорение Wx (в случае прямолинейного Р. д. всё ускорение w) постоянно. Скорость V, к-рую имеет точка через время t после начала движения, и её расстояние s от нач. положения, измеренное вдоль дуги траектории, определяются при Р. д. равенствами v=Vf - -Wxt, s VQt- -wxf /2, где Уо — нач. скорость точки. Когда знаки v и wx одинаковы, Р. д. явл. ускоренным, а когда разные — замедленным.  [c.602]

Уравнение прямолинейного движения точки имеет вид s=2i+i2, где S в л , t — в сек. Определить время t, в течение которого скорость тела достигнет 10 м сек, пройденный ва это врвхмя путь S и ускорение а. Построить графики пути и скорости.  [c.44]

После торможения движение поезда по прямолинейному пути определяется уравнением 5=16if — 0,2г , где s в метрах, t — в секундах. Определить скорость в момент начала торможения, величину ускорения а, время t и пройденный путь s до его остановки.  [c.44]

Автомобиль движется по прямолинейному участку дороги. От начала движения до рассматриваемого момента времени прошло 50 сек. За это время он развил скорость 72 кмЫас. Считая движение равноускоренным, определить ускорение, пройденный за 50 сек. путь, а также построить графики изменения ускорения, скорости и пути во времени.  [c.88]


Смотреть страницы где упоминается термин Скорость, путь, время и ускорение при прямолинейном движении : [c.411]    [c.56]   
Смотреть главы в:

Справочник конструктора-машиностроителя  -> Скорость, путь, время и ускорение при прямолинейном движении



ПОИСК



309 — Прямолинейность

Время движения

Движение прямолинейное

Движение ускоренное

Скорость в прямолинейном движении

Скорость движения

Скорость и ускорение

Скорость и ускорение в прямолинейном движении

Ускорение прямолинейного движения



© 2025 Mash-xxl.info Реклама на сайте