Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Работа внешних сил и потенциальная энергия при растяжении

Потенциальная энергия численно равна работе внешних сил, приложенных к телу, и при статическом растяжении или сжатии может быть определена по формуле  [c.30]

Выше, в 13.1 мы подсчитывали потенциальную энергию U упругой деформации стержня через работу W одной внешней обобщенной силы (см. формулы (13.7), (13.11), (13.14)). Там же величину U определяли через внутренние усилия (см. выражения (13.16), (13.17)). Наконец, в случае сложного изгиба с одновременным кручением, а также с растяжением-сжатием энергию и рекомендовалось находить в виде суммы (13.18).  [c.235]


Так как количество потенциальной энергии, потерянной грузом, численно равно работе, произведенной им при опускании, то задача об определении потенциальной энергии деформации сводится к вычислению работы внешних сил. При простом растяжении ( 10) для работы внешних сил было получено (3.1)  [c.120]

При расчете пружин иногда заданной является не сила, сжимающая или растягивающая пружину, а энергия Т, которая должна быть ею поглощена. Подобно тому, как это было при растяжении или сжатии стержня, потенциальная энергия деформации пружины U измеряется работой внешних сил.  [c.180]

Общие соотношения. Рассмотрим растяжение стержня (фиг. 15, а). Вдоль участка ОАВ происходит нагружение, разгрузке соответствует линия ВС. Площадь ОАВС представляет собой потерянную работу деформации. Большая часть этой работы, как показывают экспериментальные исследования, переходит в тепло и вызывает очень незначительное (для деформации е = 4Уо — около 2° С) нагревание испытываемого образца. Поэтому при монотонном возрастании внешней нагрузки безразлично, куда перешла работа деформации — в тепло или в упругую потенциальную энергию стержня -— вид кривой ОАВ останется неизменным. Наоборот, при разгрузке, когда деформация среды происходит вследствие накопившейся в ней упругой энергии, происшедшая диссипация энергии приобретает решающее значение и чем она больше, тем сильнее линия разгрузки ВС отклоняется от линии нагружения ОАВ. Таким образом, уравнение о =/( х) ветви нагружения может представлять как пластическую, так и нелинейно-упругую деформацию стержня. Аналогично этому простому случаю рассмотрим общие уравнения пластической деформации как некоторое обобщение закона Гука. Примем следующие исходные положения  [c.40]

Это означает, что при статическом нагружении работа внешних сил полностью преобразуется в потенциальную энергию деформации. При разгрузке тела производится работа за счет потенциальной энергии деформации, накопленной телом. Таким образом, упругое тело является аккумулятором энергии. Это свойство упругого тела широко используется в технике, например, в заводных пружинах часовых механизмов, в амортизирующих рессорах и др. В случае простого растяжения (сжатия) для вывода необходимых расчетных зависимостей потенциальной энергии деформации рассмотрим решение следующей задачи.  [c.23]


Мы рассмотрели работу внешней силы в однородном поле Земли, при растяжении пружины и, наконец, в центральном гравитационном поле. Во всех этих случаях работа не зависит от формы пути, а значение ее определялось только разностью потенциальных энергий в конечном и начальном положениях  [c.146]

Работа внешних сил и потенциальная энергия при растяжении  [c.39]

Как вычисляется работа внешних сил и потенциальная энергии при растяжении.  [c.54]

Работа внешних и внутренних сил при растяжении сжатии). Потенциальная энергия деформации  [c.55]

Знаки К ш X различны, так как —К йх = X йх представляет собой работу, производимую внешней силой. В механике условия, при которых происходит сжатие или растяжение пружины, не всегда конкретизируются явным образом определяется лишь как механическая потенциальная энергия, безотносительно к термодинамике. Если удлинение происходит изотермически, то совпадает со свободной энергией Р. Если же процесс осуще-  [c.169]

В 10 было показано, что при растяжении или сжатии стержня в нем накапливается потенциальная энергия деформации, равная работе внешних сил. То же самое происходит и при деформации кручения. Если деформации стержня при кручении являются упругими, то после снятия нагрузки, вызвавшей деформацию, стержень будет раскручиваться. При этом он может совершить работу за счет накопившейся в нем энергии деформации.  [c.138]

Так, сила, растягиваюи ая пружину, совершает работу и увеличивает потенциальную энергию пружины. При этом, если мы растягиваем пружину медленно, работа внешней силы как раз равна yвeJп чe-нию потенциальной энергии пружины. Действительно, для медленного растяжения достаточно приложить к пружине (с закрепленным неподвижно другим концом) такую постепенно увеличивающуюся силу F, которая все время сколь угодно мало превышает силу, действующую со стороны пружины. Если затем пружина будет сжиматься, то она совершит такую же работу, какую совершила внешняя сила при растяжении пружины. Следовательно, при медленном растяжении пружины работа, совершенная внешней силой, как раз равна увеличению потенциальной энергии пружины. При быстром растяжении это уже не будет иметь места, так как для того, чтобы конец пружины двигался со значительным ускорением, нужно, чтобы внешняя сила F была заметно больше силы, действующей со стороны пружины, и тогда работа внешней силы будет больше, чем увеличение потенциальной энергии пружины. Только при медленных движениях работа внешних сил как раз равна увеличению потенциальной энергии системы.  [c.131]

Рассмотрим простейшие схемы деформирования прямоосного стержня в условиях осевого растяжения, кручения и плоского изгиба (рис. 10.1, а, б, в). Полагая, что деформация не выходит за пределы действия закона Гука, можно записать связь между нагрузками и макродеформацией стержня в каждом из трех случаев и представить ее графически. Любой из трех графиков, приведенных на рис. 10.1, являет собой элементарное представление закона Гука для того или иного вида деформации стержня. Площади треугольников, покрытые штриховкой, определяют работу, затраченную внешними силами на деформирование объекта (Л). При отсутствии энергетических потерь она равна потенциальной энергии деформации нагруженного стержня (и). Следовательно  [c.224]


Смотреть страницы где упоминается термин Работа внешних сил и потенциальная энергия при растяжении : [c.299]    [c.214]    [c.271]    [c.139]   
Смотреть главы в:

Сопротивление материалов  -> Работа внешних сил и потенциальная энергия при растяжении



ПОИСК



Работа внешних и внутренних сил при растяжении (сжа. Потенциальная энергия деформации

Работа внешних н внутренних сил при растяжении (сжатии). Потенциальная энергия деформации

Работа внешних сил

Работа внешних сил. Потенциальная энергия

Работа и потенциальная энергия

Работа и энергия

Работа потенциальная

Работа растяжения

ЭНЕРГИЯ. , Работай энергия

Энергия внешняя

Энергия потенциальная

Энергия потенциальная внешняя

Энергия потенциальная растяжения



© 2025 Mash-xxl.info Реклама на сайте