Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые свойства интеграла столкновений

Некоторые свойства интеграла столкновений  [c.58]

Установим некоторые общие свойства интеграла столкновений, которые позволяют получить информацию о неравновесной системе, не располагая строгим решением кинетического уравнения Больцмана.  [c.115]

Оператор Q действует на скоростные аргументы функции /. Он описывает эффекты взаимодействий и в связи с этим называется оператором столкновений. Величина Q , /), т. е. интеграл (6.1), называется интегралом столкновений или просто столкновительным членом. В этом разделе мы изучим некоторые свойства интеграла Q, которые, несмотря на его сложную форму, позволяют выполнять различные преобразования во многих принципиально важных задачах. Фактически мы исследуем здесь несколько более общее выражение, а именно билинейное выражение  [c.86]


БГК-модель сохраняет большинство основных свойств интеграла столкновений Больцмана, но не лишена и недостатков. От некоторых из них можно избавиться путем соответствующих модификаций, правда, ценой простоты модели. Первая модификация состоит в том, чтобы допустить зависимость частоты столкновений от скорости молекулы, не оставляя ее просто локальной постоянной это изменение диктуется тем обстоятельством, что из расчетов частоты столкновений для физических  [c.113]

Наряду с выражением (ЗА.4) возможны и другие эквивалентные формы интеграла столкновений Больцмана. Например, некоторые общие свойства этого интеграла столкновений удобно изучать в представлении [86]  [c.234]

Интеграл столкновений Левинсона (4.5.15) обладает некоторыми любопытными свойствами. Прежде всего отметим, что форма интеграла столкновений Левинсона  [c.311]

БГК-модель сохраняет большинство основных свойств интеграла столкновений Больцмана, однако она обладает определенными недостатками. От некоторых из них можно избавиться путем соответствующих видоизменений за счет, правда, простоты модели. Первое видоизменение можно ввести так, чтобы частота столкновений оказалась зависящей от скорости молекулы, а не была просто локально постоянной. Это видоизменение связано с тем, что для упругих сферических молекул, всех потенциалов с конечным радиусом действия и степенных потенциалов с угловым обрезанием (за исключением максвелловских молекул) частота столкновений зависит от скорости молекул. Можно ожидать, что это изменение при больших Скоростях молекул будет существенным. С формальной точки зрения видоизменение очень просто достаточно предположить, что в формуле (1.2) V зависит от I (точнее, от с), но условия (1.1) должны по-преячнему выполняться. Все основные формальные свойства (в том числе и Н-тео-рема) сохраняются, но плотность, скорость и температура, входящие в максвелловскую функцию Ф, теперь уже не локальные плотность, скорость и температура, а некоторые фиктивные локальные параметры, связанньге с пятью моментами функции / с весом V (с). Это следует из того, что в этом случае условия (1.1) дают  [c.103]

Выше было показано, что члены в групповом разложении интеграла столкновений, порождающие вириальные разложения коэффициентов переноса, определяются динамикой изолированных групп молекул. В отличие от равновесных статических корреляций, имеющих протяженность порядка нескольких радиусов взаимодействия Гц, динамические корреляции в изолированных группах частиц могут иметь значительно большую протяженность. Оказалось, что именно это свойство динамических корреляций несет ответственность за расходимость вириальных разложений коэффициентов переноса. Для иллюстрации дальнодействующей природы динамических корреляций рассмотрим пример четырехчастичных процессов, которые дают расходящиеся вклады в коэффициенты переноса (см. рис. 3.1а). Видно, что частицы (3) и (4) перемещаются свободно на расстояния, значительно превышающие длину свободного пробега. Более того, эти расстояния могут быть сколь угодно велики. Ясно, однако, что в газе не могут существовать столь протяженные траектории. Поэтому опасный процесс столкновения четырех частиц, изображенный на рис. 3.1а, возникает в результате некоторого многочастичного процесса, в котором частицы (3) и (4) проходят расстояния порядка длины свободного пробега. Например, добавление частицы (5), изображенной на рис. 3.16, обеспечивает обрезание расходящегося вклада в четырехчастичный интеграл столкновений, связанный с аномально большим свободным пробегом частицы (3).  [c.180]


Кинетическое уравнение для одночастичной матрицы плотности можно вывести из квантового уравнения Лиувилля различными способами. В частности, для этого достаточно построить статистический оператор g t), удовлетворяющий граничному условию ослабления корреляций в отдаленном прошлом, и выразить его через ква-зиравновесный статистический оператор Qq t) который, в свою очередь, зависит от одночастичной матрицы плотности. Такой метод оказывается особенно удобным для систем со слабым взаимодействием частиц, так как он позволяет построить интеграл столкновений, исходя только из общих свойств системы. Вывод квантовых кинетических уравнений с помощью этого метода дается в параграфе 4.1. Другой подход к квантовой кинетической теории основан на цепочке уравнений для 5-частичных матриц плотности которые аналогичны классическим 5-частичным функциям распределения. В случаях слабого взаимодействия между частицами или малой концентрации частиц, квантовую цепочку уравнений можно решить с помощью теории возмущений. Некоторые разновидности этого подхода изложены в книгах [35, 57]. В параграфах 4.2 и 4.3 мы рассмотрим квантовую цепочку уравнений с точки зрения метода неравновесного статистического оператора. Вначале мы построим групповое разложение интеграла столкновений для систем с малой плотностью, а затем обобщим метод на плотные квантовые системы.  [c.248]


Смотреть главы в:

Динамика разреженного газа Кинетическая теория  -> Некоторые свойства интеграла столкновений



ПОИСК



Интеграл столкновений, свойства сим

Интегралы столкновений

Столкновения



© 2025 Mash-xxl.info Реклама на сайте