Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон Гука и его обобщение на большие деформации

Общие соотношения. Рассмотрим растяжение стержня (фиг. 15, а). Вдоль участка ОАВ происходит нагружение, разгрузке соответствует линия ВС. Площадь ОАВС представляет собой потерянную работу деформации. Большая часть этой работы, как показывают экспериментальные исследования, переходит в тепло и вызывает очень незначительное (для деформации е = 4Уо — около 2° С) нагревание испытываемого образца. Поэтому при монотонном возрастании внешней нагрузки безразлично, куда перешла работа деформации — в тепло или в упругую потенциальную энергию стержня -— вид кривой ОАВ останется неизменным. Наоборот, при разгрузке, когда деформация среды происходит вследствие накопившейся в ней упругой энергии, происшедшая диссипация энергии приобретает решающее значение и чем она больше, тем сильнее линия разгрузки ВС отклоняется от линии нагружения ОАВ. Таким образом, уравнение о =/( х) ветви нагружения может представлять как пластическую, так и нелинейно-упругую деформацию стержня. Аналогично этому простому случаю рассмотрим общие уравнения пластической деформации как некоторое обобщение закона Гука. Примем следующие исходные положения  [c.40]


Закон Гука и его обобщение на большие деформации  [c.42]

Основным физическим законом математической теории упругости является обобщенный закон Гука, выражающий наличие линейных соотношений между величинами, определяющими напряженное состояние (нормальные и касательные напряжения) в упругом теле, и величинами, характеризующими его деформацию (относительные удлинения и сдвиги). Это свойство идеально-упругого (гукова) тела соблюдается для большого числа материалов при достаточно малых деформациях.  [c.212]

В трудах советских ученых А. А. Ильюшина [34], [35], В. В. Соколовского [78] и зарубежных исследователей получили решение многие актуальные и интересные задачи, однако наряду с более или менее строгими решениями в теории пластичности находят приложение и прикладные инженерные методы, успешно разрабатываемые А. А. Гвоздевым [26], А. Р. Ржаницыным [74], А. А. Чирасом [85] и др. Большой вклад в развитие приближенных решений внесен Н. И. Безуховым. Одна из первых его работ [9] по расчету конструкций из материалов, не следующих закону Гука, по глубине обобщений и по достигнутым результатам стала классическим исследованием, наложившим существенный отпечаток на развитие прикладных методов теории пластичности. Большой интерес представляет также и работа [10], в которой был предложен эффективный прием определения деформаций стержней при упруго-пластическом изгибе.  [c.172]

В дальнейшем ограничимся при решении задач лишь случаем изотропного тела. Этот случай имеет большое практическое значение. Такие материалы, как литое железо и сталь, по их свойствам в пределах упругости можно без значительных погрешностей принимать за изотропные. Зависимость между напряжениями и деформациями в этом слзгчае выражается посредством двух упругих постоянных, и мы ее без затруднения устцровим, если сделаем следующее вполне естественное допущение. Положим, что в случае изотропного материала направления главных напряжений совпадают в каждой точке с направлениями главных деформаций и, следовательно, угол между двумя взаимно перпендикулярными площадками искажается лишь в том случае, если есть соответствующие касательные напряжения. Выделим из тела плоскостями, нормальными к главным напряжениям, бесконечно малый прямоугольный параллелепипед. В силу сделанного допущения углы этого параллелепипеда при деформации не искажаются и полное изменение формы выделенного элемента определяется тремя главными деформациями вхх, вуу и е (координатные оси х,у, г направим параллельно главным напряжениям в рассматриваемой точке). Соответствующие им напряжения будут Хх, У у и Согласно обобщенному закону Гука каждая из составляющих напряжения представляется линейной функцией составляющих деформации. Например, Хх можно представить в таком виде  [c.45]


В последние годы значительное внимание привлекли к себе задачи теории трещин, связанные с математической теорией хрупкого разрушения. Теория хрупкого разрушения, предполагающая, что тело сохраняет свойство линейной упругости (т. е. подчиняется обобщенному закону Гука) вплоть до разрушения, берет свое начало от работ Гриффитса (Griffith [1, 2]). Длительное время считалось, что область применимости этой теории ограничена немногими материалами типа стекла вследствие наличия в разрушающихся телах значительных областей пластических деформаций. Интенсивное развитие теории хрупкого разрушения началось после работ Ирвина (Irwin [Ц) и Орована (Orowan [1]), показавших, что в большом числе практически важных случаев разрушение происходит квазихрупким образом, т. е. так, что пластическая область хотя и существует, но имеет очень малые размеры и сосредоточивается в непосредственной близости поверхности трещин. 3ta важная идея открыла возможность применять теорию хрупкого разрушения во многих практических задачах.  [c.608]


Смотреть страницы где упоминается термин Закон Гука и его обобщение на большие деформации : [c.10]    [c.261]    [c.123]    [c.9]   
Смотреть главы в:

Нелинейная теория упрогости в машиностроительных расчетах  -> Закон Гука и его обобщение на большие деформации



ПОИСК



Большая деформация

Гука)

Деформации 266 —Закон Гука

Закон Гука

Закон Гука (см. Гука закон)

Обобщения



© 2025 Mash-xxl.info Реклама на сайте