Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегральные уравнения основных граничных задач для полуплоскости с трещинами

При исследовании напряженно-деформированного состояния тел с трещинами широкое применение нашел метод сингулярных интегральных уравнений. Он особенно удобен и эффективен при решении плоских задач теории упругости для тел сложной геометрии, содержаш,их включения, отверстия и трещины произвольной формы. Впервые [И, 137, 181] сингулярные интегральные уравнения использовались при исследовании распределения напряжений около прямолинейной трещины (или полосы пластичности) в некоторых классических областях (полуплоскость, полоса, бесконечная плоскость с круговым отверстием). Система произвольно ориентированных прямолинейных трещин изучалась в работах [21, 22, 70]. Рассматривался также случай криволинейных трещин в бесконечной плоскости [16, 40, 74, 92, 117]. В работах [94—96] основные граничные задачи для многосвязной области, содержащей изолированные криволинейные разрезы и отверстия произвольной формы, сведены к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. Эти результаты обобщены на случай, когда разрезы выходят на границу тела, а также соединяют отверстия между собой и (или) с внешней границей [97]. К настоящему времени появилось большое количество работ, в которых методом сингулярных интегральных уравнений изучаются плоские задачи теории трещин. Обзор этих исследований имеется в работах [5, 32, 45, 54, 70, 95, 100].  [c.5]


Используя представления комплексных потенциалов (z) и Ф2 (г) (IV.13), (IV.15), (IV.17) и (IV.18) через скачки смещений (tn) и напряжений Q на контурах криволинейных разрезов в полубесконечной плоскости, по формулам (L152) и (1.153) получаем сингулярные интегральные уравнения основных граничных задач для рассматриваемой области. В случае первой основной задачи для полуплоскости, ослабленной системой произвольно ориентированных прямолинейных трещин, такие уравнения впервые построены в работах [50, 2151. Они справедливы как для внутренних, так и для краевых трещин. В частности, па основе интегральных уравнений для системы прямолинейных трещин в полуплоскости [2151 в работе [420] рассмотрена задача об определении концентрации напряжений около треугольного краевого выреза в полубесконечной пластине. При этом вырез образовывался двумя краевыми трещинами, выходящими из одной точки. Точно так же изучалось распределение напряжений в полуплоскости около прямоугольного выреза [3521. При использовании интегральных уравнений в случае криволинейных разрезов можно рассматривать аналогичные задачи о криволинейных вырезах различной формы, выходящих на край полуплоскости.  [c.115]

К настоящему времени решены уже многие плоские задачи о напряженно-деформированном состоянии тел с отверстиями и трещинами, однако в основном они касаются случаев неограниченных областей (плоскость, полуплоскость, полоса). Изучение таких задач было начато Бови [135] и развито затем другими исследователями [И. 29, 30, 45, 65, 70, 95]. Данная глава посвящена решению задач об упругом равновесии конечной многосвязной области с трещинами и отверстиями, среди которых имеется хотя бы одно круговое. При этом, как и в предыдущей главе, понижен порядок исходной системы сингулярных интегральных уравнений при использовании общего аналитического решения первой основной задачи для бесконечной плоскости с круговым отверстием. Указанный подход позволяет более эффективно решать задачи для многосвязных областей различных внешних очертаний, ослабленных трещинами и круговым отверстием. При этом сравнительно легко могут быть рассмотрены случаи действия сосредоточенных или разрывных нагрузок на круговом граничном контуре, а также трещины, выходящие на край указанного отверстия.  [c.183]

Прежде всего рассмотрена локальная задача о контакте между недеформируе-мой четвертью плоскости и полуплоскостью, находящейся в условиях ползучести. Она эквивалентна известной задаче Черепанова Райса Хатчинсона о трещине. Отсюда получено напряженно-деформированное состояние вблизи угла как функция одного свободного параметра. Внутреннее решение для тонкого слоя получено асимптотическим анализом, для полупространства — методом Н.Х.Арутюняна, оба решения с)п ь функции еще одного свободного параметра. Размер погранслоя может быть рассмотрен как третий свободный параметр. Интегральное условие статики системы и требование непрерывности основных характеристик контактной задачи приводят к нелинейному алгебраическому уравнению для численного определения свободных постоянных. В частных сл) аях его решение может быть дано явными формулами. Помимо названных задач решена периодическая задача, моделирующая изготовление штамповкой плиты с ребрами. Более того, полностью изучены как отдельные случаи локальное решение вблизи вершины угла при ползучести (произвольный угол, различные граничные условия), асимптотика осесимметричной задачи вблизи конической точки (произвольный зп ол, различные граничные условия), а также найдены внутренние асимптотики плоской задачи для тонкого слоя из материалов Надаи и Эмбера.  [c.539]



Смотреть главы в:

Двумерные задачи упругости для тел с трещинами  -> Интегральные уравнения основных граничных задач для полуплоскости с трещинами



ПОИСК



Граничные уравнения

Задача о трещине

Задача основная

Интегральные уравнения граничных задач

Основное интегральное уравнение

Основные задачи

Основные интегральные уравнения

Основные уравнения задачи

Полуплоскость

Уравнение задачи (А) интегрально

Уравнение задачи (А) интегрально Si) интегральное

Уравнение основное

Уравнения интегральные

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте