Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные закономерности упругой и пластической деформации и разрушения

ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ УПРУГОЙ, ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ И РАЗРУШЕНИЯ  [c.185]

Основные закономерности упругой деформации, пластической деформации и разрушения  [c.14]

Основные закономерности распределения усилий по виткам резьбы при однократном нагружении в упругой области рассмотрены в работах [1, 7, 15]. Появление пластических деформаций в наиболее нагруженных витках резьбы существенно влияет на перераспределение интенсивности нагрузки в наиболее нагруженных витках. Измерение деформаций, выполненное малобазными тензорезисторами в специальных неглубоких пазах на нарезанной части шпилек, показало, что с переходом от упругой стадии деформирования витков к упругопластической происходит относительная разгрузка (до 20—30%) в зоне первых наиболее напряженных витков. На характер перераспределения усилий по виткам резьбы, находящихся в сопряжении, влияют протекающие процессы разрушения. В зависимости от конструктивного исполнения усталостные трещины, зародившиеся в наиболее нагруженных витках резьбы, развиваются в длину Ь) и глубины (/), ослабляя поперечные сечения (см. рис. 10.4, б, в).  [c.208]


Указанные закономерности деформирования и разрушения при неизотермическом нагружении определяют ряд требований к программам для расчета малоцикловой прочности элементов конструкций. В общем случае программа должна обеспечивать решение задачи в приращениях и определение момента перехода от разгрузки к нагружению при этом необходимы анализ истории нагружения в каждой точке деформируемого элемента и корректировка пределов текучести обобщенных диаграмм деформирования на величину на основе уравнения (12.8) по вычисляемым в конце каждого полуцикла пластическим деформациям. В связи с тем что в результате такой процедуры диаграммы деформирования во всех точках элемента будут отличаться даже при одной и той же температуре, необходимо осуществлять непрерывный счет задачи полуцикл за полуциклом или записывать промежуточные результаты на запоминающем устройстве. В соответствии с (12.7) на каждом этапе нагружения определяются параметры критериального уравнения e p и а (с учетом знака). Моменты перехода значения через нуль разделяют области интегрирования и 21 . Если известно, что основные изменения температурного поля происходят при упругом деформировании, то расчет упрощается  [c.267]

Ишлинский обратил внимание на возможность развития такой трактовки разрушения для исследования неустойчивости трещин в связи с развитием местных пластических деформаций и закономерностей течения материала. При решении уравнений теории упругости применительно к рассматриваемым задачам возникают трудности, связанные с удовлетворением основных зависимостей механики упругого тела, в частности условий совместности деформаций.  [c.460]

Научная и практическая актуальность проблемы исследования физических закономерностей пластической деформации и разрушения поверхностных слоев твердого тела обусловлена тем обстоятельством, что свободная поверхность, являясь специфическим видом плоского дефекта в кристалле, оказьтает сзш1ественное влияние на его физико-механические свойства, в частности на упругую стадию деформирования, предел пропорциональности и предел текучести на общий характер кривой напряжение—деформация и различные стадии деформационного упрочнения (на коэффициенты деформационного упрочнения и длительность отдельных стадий) на процессы хрупкого и усталостного разрушения, ползучести, рекристаллизации и др. Знание особенностей и основных закономерностей микродеформации и разрушения поверхностных слоев материалов необходимо не только применительно к обычным методам деформировани (растяжение., сжатие, кручение, изгиб), но и в условиях реализации различного рода контактных воздействий, с которыми связаны многочисленные технологические процессы обработки материалов давлением (ковка, штамповка, прокатка и др.), а также процессы трения, износа, схватывания, соединения материалов в твердой фазе, поверхностных методов обработки и упрочнения, шлифования, полирования, обработки металлов резанием и др.  [c.7]


Предложено несколько методов оценки механических свойств аморфных сплавов. Применительно к ленточным образцам широкое распространение получили испытания на одноосное растяжение, поскольку они дают обширную информацию о механических характеристиках. На рис. 12 приведена типичная кривая напряжение-деформация, характеризующая основные закономерности механического поведения аморфных сплавов высокие значения пределов упругости и текучести, отсутствие деформационного упрочнения и невысокое, но ненулевое значение макроскопической деформации до разрушения. Тем не менее испытания ленточных аморфных сплавов на растяжение имеют ряд существенных недостатков, часть из которых принципиально неустранима. Энергия, высвобождающаяся при пластической деформации, меньше упругой энергии, сосредоточенной в испытательной машине обычного типа. Это приводит к катастрофическому разрушению в процессе одноосного растяжения. Степень катастрофического течения зависит от запаса упругой энергии в деформирующей системе и пропорциональна величине (mjky , где т VL k — соответственно эффективная масса и жесткость испытательной машины. Более Пассивная нагружающая система, хотя и увеличивает продолжительность нестабильного течения, но делает его начало более затруднительным.  [c.170]

Непосредственное перенесение расчетных методов механики си. юшиых сред (теории упругости и пластичности) на разрушение затруднено, хотя такие попытки п предпринимаются [27, 28, 42, 46, 76, 81]. Так же. как. тля упругого, пластического, вязкого и высокоэластического состояний, основное инженерное значение и для характеристик разрун1ения остается по-прежнему за средни П1 (интегральными) величинами напряжением, деформацией и вре. енем процесса, между тем как физические закономерности определяются в значительной мере микроскопическими и субмикроскопическими величинами и потому одна нз задач теории разрушения заключается в устаповленпп связи средних ве.шчин напряжения, деформации и т. п. с микроскопическими процесса.ми. Принято считать, что трещина передает только сжимающие и не передает растягивающие напряжения [()6], а при достаточном ее раскрытии не передает и касательные напряжения. Силовой поток, перерезанный трещиной, как бы обтекает ее и вызывает концентрацию напряжений и деформаций в зонах, расположенных вблизи концов трещины (рис. 4.2) [65].  [c.175]


Смотреть главы в:

Металловедение и термическая обработка стали Т1  -> Основные закономерности упругой и пластической деформации и разрушения



ПОИСК



Деформация пластическая

Деформация разрушения

Деформация упругая

Деформация упруго-пластическая

Основные закономерности

Основные закономерности упругой деформации, пластической деформации и разрушения

Основные закономерности упругой деформации, пластической деформации и разрушения

Пластическая деформаци

Пластическая деформация и разрушение

Разрушение пластическое

Упругая и пластическая деформации и разрушение



© 2025 Mash-xxl.info Реклама на сайте