Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Исследование микропластичности

Именно на ранних стадиях деформирования, задолго до наступления текучести, проявляются индивидуальные свойства дислокаций и их построений. Следовательно, структурные и субструктурные характеристики материала с покрытием могут быть оценены в результате исследований микропластичности [67],  [c.38]

Для исследования микропластичности объемно упрочненного основного металла, а также оценки-влияния покрытий нами рекомендуется разработанная методика и экспериментальная установка [68], основанные на фиксировании остаточного прогиба образца при увеличении прилагаемых нагрузок до предела текучести изучаемого материала.  [c.38]


Нами рекомендуется методика определения когезионной прочности покрытий с использованием специальной установки, предназначенной для исследования микропластичности (см. рис. 3.10).  [c.54]

Исследования в области механики контактных взаимодействий, химических и диссипативных процессов в поверхностных и приповерхностных слоях трущихся материалов показывают, что материал в указанных зонах в процессе трения резко изменяет свое физическое состояние, меняя механизм контактного взаимодействия. Происходят существенные изменения в суб- и микроструктуре приповерхностных микрообъемов. Изучение кинетики структурных, фазовых и диффузионных превращений, прочностных и деформационных свойств активных микрообъемов поверхности, элементарных актов деформации и разрушения, поиск численных критериев оптимального структурного состояния, оценок качества поверхности должны быть фундаментальной основой в поисках материалов и сред износостойких сопряжений. В настоящее время исследованы закономерности распределения пластической деформации по глубине поверхностных слоев металлических материалов, кинетика формирования вторичной структуры, процессы упрочнения, разупрочнения, рекристаллизации, фазовые переходы, которые, в свою очередь, зависят от внешних механических воздействий, состава, свойств трущихся материалов и окружающей среды. Важное значение в физике поверхностной прочности имеет определение связи интенсивности поверхностного разрушения при трении и величины развивающейся пластической деформации. Сложность указанной проблемы заключается в двойственности природы носителей пластической деформации. Дислокации, дисклинации и другие дефекты структуры являются концентраторами напряжений, очагами микроразрушения. В то же время движение дефектов (релаксационная микропластичность) приводит к снижению уровня напряжений концентратора, следовательно, замедляет процесс разрушения. Условия деформации при трении поверхностных слоев будут определять преобладание одного из указанных механизмов, от которого будет зависеть интенсивность поверхностного разрушения. Межатомный масштаб связан с характерным сдвигом, производимым элементарными носителями пластической деформации (дислокациями). В легированных металлических системах величина межатомного расстоя-  [c.195]


Рассмотрим некоторые вопросы практического использования результатов исследования закономерностей низкотемпературной микропластичности, приведенных в главе 7.  [c.245]

Ходкинсон считал, что независимо от того, насколько малы деформации металла, некоторые остаточные деформации должны иметь место — это предсказание, сделанное в 30-х гг. прошлого века, в определенном смысле было предвестником некоторых сегодняшних исследований по микропластичности. Эксперименты Ходкинсона по растяжению и его же эксперименты по сжатию длинных стержней свидетельствовали о воспроизводимой нелинейности поведения чугуна по обе стороны от нулевого напряжения, как это показано на рис. 2.6.  [c.59]

Факт неприменимости закона Гука был обусловлен экспериментальным открытием зависимости между аппроксимирующим модулем и предварительной остаточной деформацией, микропластичности, ползучести, термоупругости, упругого последействия, не непрерывного деформирования и условий устойчивости деформации в кристаллических твердых телах — все в течение десятилетия в 30-х гг. XIX века. Эти важные открытия не только подчеркнули экспериментальные трудности, возникающие при трактовке измеренной деформации, но также подчеркнули те факты, которые стали рассматриваться как фундаментальные проблемы, характерные для механики сплошного твердого деформируемого тела. В настоящей главе монографии я показал, как экспериментаторы после 1840 г. занимались исследованием выводов из этих наблюдений.  [c.212]

Миллимикродеформацию можно исследовать с применением специально конструируемого нестандартного оборудования или с помощью метода ямок травления . Необходимо иметь в виду, что выбор метода измерения деформаций должен определяться уровнем измеряемой величины, так как при завышенной чувствительности метода на результат исследования микропластичности могут накладываться дополнительные эффекты, возникающие в области нелинейной упругости (релаксация, упругое последействие и др.).  [c.39]

Результаты проведенных исследований рациональных схем упрочнения основы деталей машин перед нанесением износостойких покрытий показали большую информативность методики определения микропластичности. На рис. 3.11 приведено изменение микропластичности стали УЗА, упрочненной различными способами. Большая микропластическая деформация стали после упрочнения регулируемой термопластической обработкой (РТПУ) по сравнению с изотермической закалкой и ВТМО указывает на особое субструктурное состояние бейнита, обеспечившее повышенные значения вязкости разрушения.  [c.42]

В связи с этим основные задачи исследования заключались в следующем. Прежде всего необходимо было доказать возможность низкотемпературной деформации прямыми физическими методами исследования, в частности, с использованием метода трансмиссионной электронной микроскопии. Кроме того, з штывая, что большинство ранее проведеш1ых исследований бьши выполнены на Ge и при температурах не ниже 20° С, представляло интерес провести подобные исследования на Si при более низких температурах — вплоть до жидкого азота. Причем особый интерес представляло обнаружение и изучение закономерностей низкотемпературной микропластичности на нитевидных кристаллах ( усах ) Si, которые обладают теоретической прочностью и ниже 400—5 00° С считаются абсолютно хрупкими кристаллами.  [c.169]

Чем же объяснить тот факт, что в большинстве предьщущих исследований (проведенных до 1967 г.) не удавалось четко доказать возможность протекания микропластичности в области хрупкого разрушения полупроводников, а если такая возможность и допускалась, то она трактовалась только с позиций протекания атермического безактивационного процесса Это обусловлено методическим несовершенством способа деформирования, т.е. тем обстоятельством, что, как правило, единственный и традиционный метод нагружения кристалла в области хрупкого разрушения микроин-дентированием, обладающий высоким и практически неконтролируемым уровнем напряжений, по существу диктовал экспериментаторам и соответствующие вьшоды.  [c.249]

Во многих исследованиях малых деформаций твердых тел, проводившихся в то же время, что и опыты Кольрауша (Kohlraus h [1863, 1]), одновременно обнаруживались в различной мере явления микропластичности, ползучести, упругого и теплового последействий. Чтобы свести исследование де( юрмаций только к изучению упругого последействия, Кольрауш проводил свои опыты по кручению стеклянных нитей длиной 35 мм из хорошо очищенного стекла, для которых он не мог обнаружить поддающихся измерению остаточных деформаций в исследованном им диапазоне изменения деформаций ). Промежуток времени от начала опыта до момента проведения измерений был достаточно велик и тепловое равновесие успевало установиться.  [c.115]


Как я отметил в разделе 2.18, это изобретение дало Баушингеру возможность выполнить также первые исчерпываюш,ие исследования по сжатию. Предыдуш,ие изучения влияния реверсивных нагрузок по необходимости выполнялись при испытаниях на кручение или изгиб, поскольку при сжатии длинных образцов, которые тогда использовались для получения необходимой разрешаюш,ей способности по деформациям, происходило выпучивание. Баушингер тш,ательно различал пределы упругости и текучести в отношении как терминологических определений, так и суш,ности наблюдаемых эффектов. Хотя он отождествлял предел упругости с пределом пропорциональности, это не было чисто произвольным выбором определения. Он отмечал, что при высокой разрешаюш,ей способности измерительного прибора можно замерить остаточную деформацию при нагрузках, вызываюш,их напряжение ниже предела пропорциональности. Однако эта малая пластическая деформация воспроизводилась при повторном нагружении того же образца. Превышение предела пропорциональности не только вело к возрастанию величины остаточной деформации, хотя она еш,е оставалась чрезвычайно малой, но и к ее изменению от опыта к опыту. Таким образом, по определению Баушингера предел упругости — это точка, ниже которой микропластичность была устойчивой. Он, далее, отметил, что выше этого предела упругости наблюдался эффект упругого последействия в течение некоторого промежутка времени, хотя ниже предела упругости образец мог оставаться под фиксированными нагрузками долгое время без какого бы то ни было поддаюш,егося измерению увеличения деформации. Он использовал термин предел текучести для определения напряжения, со-ответствуюш,его точке на диаграмме деформаций, начиная от которой происходят сравнительно большие пластические деформации. В современной терминологии понятие предел упругости обычно соответствует баушингеровскому пределу текучести. Это обстоятельство надо иметь в виду, сравнивая ссылки XIX и XX веков на эффект Баушингера .  [c.48]


Смотреть страницы где упоминается термин Исследование микропластичности : [c.37]    [c.251]    [c.259]    [c.429]   
Смотреть главы в:

Исследование структуры и физико-механических свойств покрытий  -> Исследование микропластичности



ПОИСК



Микропластичность



© 2025 Mash-xxl.info Реклама на сайте