Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые результаты исследования турбулентных характеристик

В предыдущих главах 2 и 3 было показано, как при воздействии слабых акустических возмущений можно осуществлять управление аэродинамическими и акустическими характеристиками дозвуковой турбулентной струи. В настоящей главе рассмотрены некоторые результаты экспериментального исследования воздействия интенсивных периодических и, в частности, акустических возмущений на аэродинамические характеристики турбулентной струи. Мы здесь не будем касаться энергетической выгодности такого способа управления турбулентными струями. Отметим лишь, что рядом авторов были выполнены экспериментальные исследования характеристик турбулентных струй с высокой интенсивностью периодического возбуждения. Однако сравнение результатов этих исследований затруднено тем обстоятельством, что периодический во времени закон модуляции расхода в струе определялся конструктивными особенностями устройств (прерывателей потока), создающих пульсации скорости в струе. Это обстоятельство затрудняет обобщение или сопоставление результатов опубликованных работ, так как структура течения в возбужденной струе, по-видимому, зависит от спектрального состава периодических пульсаций скорости и масштаба турбулентности в выходном сечении сопла. Отмеченное обстоятельство подтверждается существенными отличиями закономерностей распространения сильно возбужденных турбулентных струй, установленными в работах различных авторов [4.2,4.4,4.6,4.7,4.9].  [c.129]


В этой работе показано, что при фиксированной длине трассы и на заданной частоте с увеличением размера излучающей апертуры W o размер пучка Wb сначала убывает, достигает некоторого минимума, а затем начинает возрастать. Кроме того, было отмечено, что размер пучка Wb растет с увеличением длины трассы L по закону, немного более быстрому, чем линейный. Эти результаты могут быть объяснены на основе формулы (18.39), записанной для сфокусированного пучка (a,L =1)- Результаты других экспериментальных исследований, относящихся к волновым пучкам, представлены в работах [140, 147]. В работе [104] проведены теоретические и экспериментальные исследования различных характеристик волновых пучков. Дрожание пучка и подавление такого дрожания при помощи быстро следящего излучателя рассмотрены в работе [106]. Среди других исследований по распространению волновых пучков можно указать на работы [166, 203, 210, 211, 271]. В работах [69, 212] рассмотрено распространение сферической волны в работе [68] результаты этих исследований используются для диагностики турбулентности. Конечный размер приемной апертуры ослабляет флуктуации принятого сигнала. Этот эффект, называемый усредняющим действием апертуры, исследовался во многих работах [133, 242, 337, 343].  [c.140]

В заключение отметим еще один из результатов, полученных при этих исследованиях. Опыты показали, что с увеличением температуры окружающей среды на 10° С частота колебаний возрастает на 1%, а амплитуда колебаний в камере на столько же уменьшается. Эти данные были получены для аэродинамического генератора колебаний с / = 3 мм, ф,1 . = 7,5°, с о = з=1 мм, б/о=0,2 мм, б/з=0,2 мм, Ах = 0 при работе его с Ро=1 кГ/см и с ро=250 мм вод. ст. Используя рассматриваемые в 28 уравнения, описывающие процессы заполнения и опустошения пневматической камеры, и учитывая характеристики пристенного пограничного слоя (см. 53), можно проанализировать указанное выше влияние температуры на работу аэродинамического генератора колебаний и указать пути к усилению этого влияния, если оно представляется практически целесообразным, или же, наоборот, к его компенсации, если нужно, чтобы частота колебаний сохраняла при изменении температуры неизменное значение. Не рассматривая здесь подробно характеристики изменения частоты колебаний в функции от температуры, приведем лишь некоторые данные, относящиеся к этому вопросу. Из уравнений заполнения и опустошения пневматических камер с турбулентными дросселями, которые выводятся в дальнейшем, следует, что для изменения давления в камере на заданную величину при прочих равных условиях нужно время, значение которого обратно пропорционально корню квадратному из абсолютной температуры. При этом в случае неизменного объема камеры и  [c.166]


Сооружения в трехмерных потоках результаты проведенных исследований. Усложнение структуры воздушного потока при обтекании сооружений, а также за счет особенностей местности и объектов,, находящихся выше по течению, указывает на необходимость проведения детальных экспериментальных исследований давления ветра на сооружения, используя моделирование в аэродинамической трубе объектов и реальных условий местности. Для того чтобы дать некоторое-представление о характере получаемых таким образом результатов и указать на важную роль, которую играют в них вид профиля скорости в пограничном слое и характеристики турбулентности, ниже приведено несколько примеров.  [c.122]

Некоторые результаты исследования перехода ламинарного пограничного слоя в турбулентный получены при применении соображений устойчивости. Ламинарное течение устойчиво, если возмущения со временем затухают, если же они нарастают, то ламинарное течение по достижении некоторого предельного состояния становится неустойчивым и может произойти переход ламинарного течения в турбулентное. Эти рассуждения применимы и к явлению перехода ламинарного слоя в турбулентный. Теорию устойчивости ламинарного пограничного слоя предложили в 1946 г. Л. Лиз и Линь Цзя-цзяо. Однако эти теоретические исследования не давали полного представления о механизме перехода. И если, как считал Карман в 1958 г., математическая теория устойчивости ламинарного пограничного слоя обнаруживала блестящее согласие с опытом в той части, где описываются затухание и нарастание колебаний, то это не означает, что мы действительно понимаем механизм перехода Не лучшее положение наблюдалось и в теории турбулентного пограничного слоя газа — не имелось достаточного количества экспериментальных данных для разработки полуэмпирических методов, для приближенного расчета характеристик такого слоя. Некоторый сдвиг наметился после работ советских ученых Ф. И. Франкля и В. В. Войшеля (1937), которые вывели формулы распределения скоростей и закон трения в турбулентном пограничном слое с учетом влияния числа Мкр и теплопередачи В 1940 г.  [c.325]

О некоторых методах моделирования турбулентности. Помимо статистического подхода к моделированию турбулентности в настоящее время все более широкое применение находит феноменологический (полуэмпириче-ский) подход и методы прямого численного моделирования турбулентности на основе решения специальных кинетических уравнений или нестационарной системы трехмерных уравнений Навье-Стокса, хотя в силу стохастичности данного явления в реальности удается получать лишь осредненные характеристики движения. Это позволяет, тем не менее, иногда проследить не только эволюцию образований различных пространственных структур с течением времени, но также изучать общую динамику и природу развития турбулентности. Например, результаты численного моделирования явления перебросов в гидродинамической системе (сконструированной в виде многоярусной модели зацепления простейших элементов - триплетов) иллюстрируют каскадный процесс передачи энергии в развитом турбулентном потоке, соответствующий известному закону Колмогорова-Обухова Гледзер и др., 1961) и подкрепляют представления об общих свойствах в поведении динамических систем. Интересно также отметить, что исследование процесса стохастизации динамических систем и сценариев перехода к хаосу при численном моделировании турбулентности служит аналогом решения некорректных задач с использованием оператора осреднения и параметрического расширения Тихонов и Арсенин, 1986). При таком подходе упорядоченная структура турбулентного течения, которая определяется как аттрактор асимптотически устойчивого решения для осредненных величин, представляет собой его регуляризованное описание Белоцерковский, 1997). Следует однако заметить, что использование методов прямого численного моделирования турбулентности для решения практически важных задач (особенно задач, связанных с расчетами турбулентного тепло-и массопереноса в многокомпонентных химически активных смесях) часто затруднительно или является слишком громоздким. Поэтому подобные задачи целесообразнее решать с помощью более простых, полуэмпирических теорий.  [c.16]


Как уже упоминалось выше, одним из важных соображений, которое надо учитывать во всех экспериментах на моделях, является неадекватное в большинстве случаев воспроизведение значений числа Рейнольдса в натурных условиях. Некоторая компенсация этого недостатка в ряде случаев обеспечивалась введением при моделировании поверхностной шероховатости или других устройств на поверхности модели, вызывающих турбулентность (турбулизаторов), так что возбуждался поток, имеющий некоторые характеристики потока при более высоком числе Рейнольдса. До настоящего времени, по-видимому, не существует какого-либо общего руководства по таким устройствам, хотя имеются отдельные случаи успешного моделирования. Например, в [4.25] сообш,ается, что распределение средних значений Ср по периметру горлового сечения в натурных условиях было адекватно воспроизведено при лабораторных испытаниях посредством использования специально подобранной шероховатости поверхности модели при Ре 1,2-10 . Довольно хорошее совпадение отмечается также между измерениями пульсаций давления на модели и в натурных условиях, результаты которых приведены на рис. 4.32. Об исследованиях, посвященных изучению влияния шероховатости поверхности или высоты ребер и их размещения на распределение давления по поверхности гиперболической градирни, сообщается в [4.27.....4.31]. Как отмечается в [4.32, 4.33], в которых описывается влияние изменения высоты импостов на распределения давления по поверхностям моделей зданий, относительные высоты возмущений приземного пограничного слоя должны быть значительно больше при моделировании, чем в натурных условиях, из-за различия условий в пределах приземных погранич-  [c.127]


Смотреть страницы где упоминается термин Некоторые результаты исследования турбулентных характеристик : [c.210]   
Смотреть главы в:

Теория и техника теплофизического эксперимента  -> Некоторые результаты исследования турбулентных характеристик



ПОИСК



Некоторые результаты исследований

Результаты исследований

Турбулентность характеристика

Характеристики турбулентных



© 2025 Mash-xxl.info Реклама на сайте