Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Синтез энергий

Основная проблема, связанная с реакцией ядерного синтеза, состоит в разработке технологии, способной удерживать газ заряженных частиц, плазму при температуре порядка многих миллионов градусов в течение довольно длительного времени для того, чтобы высвободить нужное количество энергии, в то время как плазма находится в изолированном состоянии. Известны два способа, с помощью которых управляют этим процессом метод магнитных полей и метод удерживания атомов тяжелого водорода с помощью мощных лазеров. Первый метод имеет несколько вариаций, из которых наиболее известна токамак [слово тока-мак составлено из первых слогов русских слов тороидальный (то), камера (ка) и магнитный (мак)]. Этот метод представляет собой наиболее легкий путь осуществления ядерного синтеза, в котором участвуют дейтерий и тритий и который протекает в удерживаемой с помощью магнитных полей плазме при температуре более 100 млн. °С. Конечными продуктами реакции синтеза являются ионы гелия (Не ) и нейтроны. Около 80% высвобождаемой в результате синтеза энергии приходится на нейтроны. Высокая кинетическая энергия этих частиц должна быть преобразована в тепло и использована для расширенного. воспроизводства трития путем абсорбции энергии в слое лития. Системы переноса тепла и преобразования в тепло, которые являются следующей ступенью, аналогичны используемым в ядерных реакторах деления. При осуществлении второго метода лазерный луч направляют на скопление атомов дейтерия-трития с разных  [c.230]


Однако создание атомной бомбы и возможность развить в ней значительные температуры (практически звездные) дает некоторую надежду, что в будущем в той или иной форме будут использовать выделяемую при синтезе энергию. На фиг. 98 показаны экзоэнергетические реакции синтеза ядер.  [c.152]

Из рассмотренных реакций наиболее интересна в этом смысле реакция получения гелия при бомбардировке трития протонами с выделением при каждом акте синтеза энергии в 19,8 Мэб. На каждую образованную таким путем грамм-молекулу гелия (4 г) выделенная энергия будет порядка  [c.152]

Применение конденсаторов. Конденсаторы как накопители электрических зарядов и энергии электрического поля широко применяются в различных радиоэлектронных приборах и электротехнических устройствах. Они используются для сглаживания пульсаций в выпрямителях переменного тока, для разделения постоянной и переменной составляющих тока, в электрических колебательных контурах радиопередатчиков и радиоприемников, для накопления больших запасов электрической энергии при проведении физических экспериментов в области лазерной техники и управляемого термоядерного синтеза.  [c.146]

При синтезе 1 г гелия из дейтерия и трития выделяется энергия 4,2-10" Дж. Такая энергия выделяется при сжигании 10 тонн дизельного топлива.  [c.333]

Запасы водорода на Земле практически неисчерпаемы, поэтому использование энергии термоядерного синтеза в мирных целях является одной из важнейших задач современной нау-  [c.333]

Рис. 12.12. Схема синтеза гелия из водорода по протонному циклу, происходящего в звездах с массой, не превышающей массы Солнца, в которых имеет место основная последовательность ядерных превращений. Плотность 10 г/см . Температура 10 К. Итоговый результат 4 ядра водорода ядро гелия выделенная энергия = 10 кВт-ч на фунт (2,2 X X 10 кВт-ч/кг) превращенного вещества. Рис. 12.12. Схема синтеза гелия из водорода по протонному циклу, происходящего в звездах с массой, не превышающей <a href="/info/427952">массы Солнца</a>, в которых имеет место основная последовательность <a href="/info/418362">ядерных превращений</a>. Плотность 10 г/см . Температура 10 К. Итоговый результат 4 ядра водорода ядро гелия выделенная энергия = 10 кВт-ч на фунт (2,2 X X 10 кВт-ч/кг) превращенного вещества.
В 62 будет введено понятие энергии активации для слияния (синтеза) ядер в одно более крупное ядро. На рисунке 96 изображена зависимость энергии активации от атомного номера Z. С возрастанием — энергия активации Sf уменьшается. Кривая В вы-л  [c.305]


Энергия относительного движения ядер может быть увеличена путем повышения температуры. Поэтому повышение температуры приводит к быстрому возрастанию вероятности туннельного сближения ядер Ai и Л2. Сущность ядерных реакций слияния в том и состоит, что оголенные атомные ядра за счет своей кинетической энергии при столкновении преодолевают потенциальный барьер и подходят друг к другу на такое близкое расстояние что под действием ядерных сил сцепления они сливаются в единую систему — новое, более сложное ядро. Поскольку необходимая для слияния ядер кинетическая энергия подводится к ним как тепловая энергия, то такие ядерные реакции и называются термоядерными реакциями слияния (синтеза).  [c.325]

В целях промышленно-технического использования термоядерной энергии слияния необходимо овладеть управляемыми термоядерными реакциями, которые могут быть вызваны по воле человека и интенсивность течения которых могла бы регулироваться человеком. Управляемыми реакторами слияния будем называть такое устройство, в котором по воле человека могут протекать управляемые термоядерные реакции синтеза.  [c.328]

Сравнение энергий связи для легких и тяжелых ядер показывает энергетическую выгодность слияния (синтеза) первых и разделения на части (реакция деления) вторых.  [c.99]

Обе реакции относятся к реакциям синтеза легких элементов, которые должны приводить к освобождению энергии (см. 2, п. 5 . Более подробно реакции такого типа будут рассмотрены в гл. XII.  [c.261]

Легко видеть, что необходимым условием для возможности цепной реакции синтеза является очень высокая температура. Действительно, при рассмотрении ядерных реакций, идущих под действием заряженных частиц, было показано, что в этих процессах существенную роль играет кулоновский барьер, который препятствует ядерному взаимодействию даже при Q > О, если кинетическая энергия бомбардирующей частицы недостаточно велика. У легких ядер кулоновский барьер невысок, но все же для эффективного протекания реакций даже со столь легкими ядрами как в реакциях (65.1) и (65.2) нужны дейтоны с энергией примерно 0,1 Мэе.  [c.479]

Чтобы реакция была самоподдерживающейся, дейтоны с такой энергией должны возникать в процессе самой реакции, подобно тому как в реакции деления возникают нейтроны деления, вызывающие новые акты деления. Разница заключается в том, что в реакции синтеза с самого начала процесса можно иметь достаточное количество дейтонов, но их энергия низка.  [c.479]

Так как процесс синтеза сопровождается большим энерговыделением, то при достаточно большой концентрации взаимодействующих ядер в принципе становится возможной цепная термоядерная реакция, при которой тепловое движение реагирующих ядер поддерживается за счет энергии реакции, а реакция за счет теплового движения.  [c.484]

Флеров Г. Н. и др.. Синтез и физическая идентификация изотопа 104-го элемента с массовым числом 260. Атомная энергия , 17, 310 (1964).  [c.712]

Большая часть наших знаний о плазме получена из исследований газового разряда. В настоящее время интерес к изучению плазмы резко возрос в связи с проблемой энергетического использования термоядерных реакций синтеза легких ядер, а также в связи с использованием плазмы в качестве пара (рабочего вещества) в МГД-генераторах. При большой температуре газа, когда он находится в. состоянии плазмы и частицы движутся с большими скоростями, становятся возможными преодоление кулоновского потенциального барьера при столкновениях атомных ядер и их синтез. Практически особо важное значение представляет возбуждение термоядерных реакций в дейтерии, так как в этом случае такие реакции должны идти при относительно меньших температурах (Г 10 К). Горение ядер дейтерия в результате их синтеза в а-частицы приводит к выделению большой энергии.  [c.215]

Из всех рассмотренных выше режимов теплообмена практически наиболее важным является пузырьковое кипение. Будучи во многих случаях неотъемлемой частью различных технологий, пузырьковое кипение вместе с тем часто оказывается вне конкуренции как способ охлаждения твердых поверхностей, подверженных высокоинтенсивным тепловым воздействиям (элементы конструкций установок термоядерного синтеза, мощные лазеры, физические мишени и т.д.). Очень сильная зависимость плотности теплового потока от перегрева стенки позволяет отводить потоки энергии огромной плотности при относительно небольших температурных напорах (АТ = - Т )- Ограничением здесь выступает кризис пузырькового кипения, который в свою очередь может быть отодвинут в область весьма высоких плотностей тепловых потоков путем повышения скорости вынужденного движения и недогрева жидкости до температуры насыщения (см. 8.4).  [c.347]


Легко подсчитать, что в процессах деления и синтеза высвобождается всего лишь 0,1—0,3% энергии покоя участвующих в реакции ядер. Возникает естественный вопрос, существуют ли возможности более полного высвобождения энергии покоя Мс . Для такого высвобождения нуклоны должны превращаться в более легкие частицы — пионы, лептоны, фотоны. Но разрушение нуклонов строго запрещено законом сохранения барионного заряда (см. гл. Vis, 2).  [c.564]

Получение энергии в термоядерных реакциях синтеза связано с осуществлением в макроскопических масштабах управляемой реакции  [c.588]

По современным спектроскопическим данным массовый состав вещества Вселенной таков около 70% водорода, 30% гелия и 1% более тяжелых элементов (углерода, кислорода и т. д.). Отсюда следует, что ядерные реакции в звездах должны быть термоядерными реакциями синтеза более тяжелых элементов из водорода. Из кривой зависимости удельной энергии связи ядра от массового числа (см. рис. 2.5) видно, что выделение ядерной энергии прекратится, когда все ядра водорода превратятся в ядра группы железа. Следовательно, полный запас ядерной энергии звезды составляет  [c.603]

В теории механизмов и машин под термином синтез понимают проектирование механизмов. Для этого сначала формулируют техническое задание, в котором должны быть отражены назначение механизма в соответствии с технологическим процессом или технологическими операциями, функции движения выходных звеньев и функции изменения сил полезных сопротивлений, а также вид источников энергии.  [c.58]

Большие возможности открываются в связи с освоением термоядерной энергии и созданием принципиально новых установок термоядерных реакторов, обеспечивающих управляемый термоядерный синтез. Остановимся на основах термоядерного синтеза и условиях его осуществления. В химических реакциях, как известно, участвуют только внешние оболочки атомов и молекул, тогда как ядра остаются неизменными. Так, реакция сгорания дейтерия (тяжелый изотоп водорода) в кислороде, сопровождаемая выделением теплоты Q, имеет вид  [c.280]

Недостаток дейтерий-тритиевой реакции для создания на ее основе перспективных термоядерных двигателей, состоит в том, что около 80 % энергии выделяется при этом в форме быстрых нейтронов. Заслуживают поэтому внимания другие реакции синтеза, например, дейтерий — дейтерий, продуктами которых являются высокоэнергетические заряженные частицы. В этом случае выделяющуюся при реакциях синтеза энергию сравнительно легко можно было бы преобразовать в направленную энергию пучка ионов, используя методы, разобранные в гл. 1. Однако для осуществления реакции дейтерий - дейтерий требуются существенно более высокие значения температуры и шютности плазмы, чем в случае реакции дейтерий — тритий. Недавно В.А. Бело-  [c.185]

Определив АТыб, по уравнению (4.53) динамического синтеза при установившемся режиме подсчитываем У , а затем Ум,,. Во многих случаях момент инерции маховика Ум ,х преобладает над остальными моментами инерции 1 группы звеньев. Поэтому всякие измене-. ния кинетической энергии Ti происходят прежде всего за счет изменений кинетической энергии маховика.  [c.171]

В энергетике недалекого будущего новым источникам энергии отводится ведущая роль. Потребление энергии в промыщленных целях на данном этапе развития увеличивается с каждым годом. Обеспечить такой расход энергии только за счет топливных ресурсов земного шара и использования атомной энергии невозможно. Мировые запасы нефти, угля и газа не безграничны. Перспективы получения энергии в широких масштабах в результате ядернэй реакции деления также проблематичны, Правда, положение может улучшиться при использовании техники реакторов-размножителей и при овладении реакцией ядерного синтеза.  [c.6]

Отсюда масса каменного угля, при сжигании которого оспобонг-дается столько же энергии, сколько и при синтезе 1 г гелия, равна  [c.344]

Сл( довательно, энергия ЛМс равна сумме кинетических энергий частиц, возникающих в процессе распада. Это соогношение играет важную роль в ядерной физике, указывая источник энергии при процессах деления ядер. В то же время если М (т f f- m2), то реакция может идти в противоположном направлении, обеспечивая термоядерный синтез. Соотношение (7.32) показывает, какая громадная энергия сосредоточена в атомном ядре. Если исходить из среднего значения дефекта масс, примерно равного 0,006 единицы массы на один нуклон, то окажется, что при объединении этих частиц и ядре выделяется энергия, достигающая около 6 МэВ на один нуклон, что в несколько миллионов раз больше энергии обьпгных химических реакций (1 — 2 эВ на атом водорода).  [c.382]

В 2, П. 5 было показано, что кроме процесса деления тяжелых ядер может существовать еще один способ освобождения ядерной энергии — синтез легких ядер. Природа энергии Солнца и звезд подтверждает и практическую осуществимость реакций синтеза. Как известно, солнечная энергия освобождается в результате двух кольцевых процессов, называемых протоннопротонным и углеродно-азотным циклами, которые сводятся к последовательному преобразованию протонов в ядра гелия с выделением большого количества энергии. Продолжительность углеродно-азотного цикла составляет несколько десятков миллионов лет, а протонно-протонного — даже около 15 млрд. лет. Тем не менее из-за колоссального количества участвующих в циклах ядер Солнце непрерывно излучает огромную энергию.  [c.478]

Известно, что у легких ядер средняя энергия связи, рассчитанная на один нуклон, растет с ростом массого числа. Поэтому процесс слияния легких ядер энергетически выгоден и должен сопровождаться выделением энергии. Условием для процесса синтеза является достаточно большая кинетическая энергия взаимодействующих ядер, необходимая для успешного преодоления кулоновского барьера. Эта энергия может быть получена как анергия теплового движения при очень сильном нагревании.  [c.484]


В последние двадцать лет началось практическое использование новых энергетических ресурсов, а именно энергии, освобождаемой при превращениях атомных ядер. Сейчас за счет ядерных ресурсов покрывается менее 1 % мирового потребления энергии. Однако целесообразность и преимущества этого нового источника энергии настолько очевидны, что позволяют с увренностью предсказать быстрый рост ядерной энергетики при этом будут использованы ядерные реакторы различных типов, в первую очередь на медленных нейтронах. Более отдаленной представляется перспектива использования энергии термоядерного синтеза легких элементов, которая полностью снимет угрозу исчерпания энергетических ресурсов.  [c.514]

Для общей ориентировки в вопросе о том, какие ядерные реакции являются экзотермическими, можно воспользоваться кривой удельной энергии связи (см. рис. 2.5). Из этой кривой видно, что в среднем удельная энергия связи с ростом массового числа А сначала растет, а затем при А 50—60 достигает максимума (называемого железным , так как значению А = 56 соответствуют ядра изотопов железа), после чего снова убывает. Ядерная реакция экзотермична, когда конечные ядра связаны сильнее начальных. Поэтому можно утверждать, что, как правило, экзотермическими для легких (например, А л 10) ядер будут реакции синтеза более крупных ядер, а для тяжелых — реакции расщепления ядра на достаточно крупные осколки. Наиболее сильно кривая удельной энергии связи наклонена на краях. Поэтому наиболее выгодными энергетически будут реакции синтеза для самых легких ядер, а реакции расщепления — для са мых тяжелых. Кроме того, из-за резкого пика в энергии связи а-частицы сильно экзотермическими являются некоторые реакции наилегчайших ядер с образованием а-частиц в конечном состоянии.  [c.561]

Любой способ получения энергии в конечном счете состоит в превращении первичной, т. е. располагаемой энергии, будь то внутренняя энергия органического топлива, или энергия расщепления ядер, или энергия ядер-ных реакций синтеза, или энергия полей, например, энергия электромагнитного поля, в ту форму энергии, которая необходима для данной конкретной цели. Наиболее распространенным, видом энергии является электрическая, представляющая собой универсальную форму энергии. К источнику энергии, т. е. к техническому устройству, служащему для преобразования энергии, предъявляется прежде всего требование возможно большей плотности потока преобразуемой энергии.  [c.3]

Представляют интерес результаты эксергетпческого анализа синтеза аммиака, приведенные в журнале Химическая промышленность (1982, № 5). Из теплового баланса ЭХТС следует, что в колонне синтеза аммиака, водоподогревателе и теплообменных аппаратах потери энергии близки нулю. Из эксергетического же анализа следует противоположный вывод — наибольшие потери эксергии оказываются в колонне синтеза (22,6% от всех потерь) они выше, чем в компрессоре (16%) и газовой турбине (20%), что объясняется большой необратимостью протекающей в колонне синтеза аммиака химической реакции. Общие потери в колонне синтеза аммиака, водоподогревателе и теплообменниках составляют почти половину всех эксергетических потерь ЭХТС. Потери эксергии в колонне синтеза аммиака можно значительно уменьшить за счет повышения температуры в одной из ее зон, так как это мероприятие позволило бы более эффективно использовать теплоту реакции и выдать на сторону пар более высоких параметров.  [c.322]

Те р м о д и н а м и к а — наука о преобразовании энергии. Ее возникновение в конце лервой четверти прошлого столетия было вызвано необходимостью научного обоснования принципа действия и методов расчета тепловых двигателей. Однако в своем дальнейшем развитии благодаря универсальности и изяшеству своих методов термодинамика перешагнула границы теплоэнергетики и ее методы анализа с большим успехом стали применять во многих других областях знаний, нередко весьма далеких от теплоэнергетики. Можно с уверенностью сказать, что изучение свойств веществ и особенности изменения их состояния — это, в сущности, изучение процессов превращения энергии. От явлений микромира до процессов в галактиках, от простого механического перемещения до сложнейших биологических процессов, всевозможные физические и химичес1 ие превращения, электромагнитные и гравитационные явления, распад и синтез атомных ядер, рождение и гибель звезд — во всем этом оп ределяющую роль играют превращения энергии. Поэтому исследования во всех таких случаях проводят с привлечением термодинамических методов.  [c.6]


Смотреть страницы где упоминается термин Синтез энергий : [c.10]    [c.556]    [c.343]    [c.396]    [c.305]    [c.322]    [c.22]    [c.43]    [c.481]    [c.482]    [c.232]    [c.280]    [c.483]    [c.216]   
Смотреть главы в:

Физическая природа разрушения  -> Синтез энергий



ПОИСК



Новые технологии использования энергии Солнца, ядерного синтеза, МГД-генераторов

Синтез

Энергия синтеза в силовых установка



© 2025 Mash-xxl.info Реклама на сайте