Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Краевая задача для тонкой цилиндрической оболочки

Постановка задачи о термоупругих краевых эффектах. Рассмотрим цилиндрическую оболочку регулярного строения, составленную из чередующихся слоев различной жесткости. Число слоев предполагается произвольным. Каждый слой при этом считается тонким, в силу чего распределение температуры по толщине каждого слоя принимается линейным. Однако вся оболочка тонкой не считается, поэтому учитывается изменение метрики по толщине оболочки (различие радиусов срединных поверхностей соседних жестких слоев). Соседние мягкие и жесткие слои предполагаются состоящими в идеальном тепловом контакте. Материал слоев считается упругим и изотропным. Жесткие слои являются тонкими оболочками, работающими в соответствии с гипотезами Кирхгофа—Лява, а слои пониженной жесткости предполагаются трансверсально мягкими [5].  [c.77]


На примере цилиндрической оболочки мы убедились в том, что при плавно меняющейся нагрузке в большей части оболочки можно пренебречь изгибом и напряжениями от изгибающих моментов но сравнению с равномерно распределенными по толщине напряжениями от усилий Гар. Моментное напряженное состояние реализуется только в зоне краевого эффекта, протяженность кото-рой оценивается характерным линейным размером к = УНк. Для оболочки положительной гауссовой кривизны этот результат носит совершенно общий характер, схема расчета таких оболочек строится следующим образом. Сначала находится усилие в оболочке, которую представляют как тонкую, нерастяжимую мембрану, совершенно не сопротивляющуюся изгибу. Эта задача решается с помощью одних только уравнений статики и, собственно говоря, не относится к теории упругости. Соответствующая теория называется безмоментной теорией оболочек. Решение, найденное по безмоментной теории, как правило, не позволяет удовлетворить всем граничным условиям, поэтому вблизи границы рассматривается краевой эффект, связанный с изгибом. Ввиду малости области краевого эффекта, уравнения теории оболочек для этой области принимают относительно простую форму. Для вывода уравнений безмоментной теории нам понадобятся некоторые сведения из теории поверхностей, которые предполагаются известными и сообщаются для справки.  [c.423]

Рассматривается ряд задач устойчивости тонких упругих оболочек. Круг обсуждаемых вопросов ограничен случаями, которые приводятся к решению линейных краевых задач и в которых применение асимптотических методов позволяет получить приближенное решение либо существенно упростить последующее числовое решение. Исследуется зависимость форм потери устойчивости от характера начального напряженного состояния, геометрии оболочки, ее закрепления и других факторов. Строятся формы потери устойчивости, локализованные в окрестностях линий или точек на срединной поверхности. Отдельно рассматриваются цилиндрическая и коническая оболочки.  [c.2]

Выписанные соотношения, помимо погрешности основных гипотез теории тонких оболочек, содержат и дополнительные погрешности. Последними можно пренебречь в задачах, где функции, характеризующие напряженно деформированное состояние, значительно возрастают при дифференцировании хотя бы по одной координате. Такое напряженное состояние реализуется, например, в не очень длинных цилиндрических оболочках и при краевом эффекте (см. стр. 651). Кроме того, отброшенные в формулах (70) и (71) члены содержат множителями  [c.647]


Во многих случаях удовлетворение двух мембранных и двух изгйбных условий будет достаточно для практических целей, например для свободно опертых или защемленных краев, тогда как в других случаях, например при незакрепленных краях, гипотеза Кирхгофа — Лява для случая совместного действия. поперечных сил и крутящих моментов может быть использована для удовлетворения по крайней мере интегральных краевых условий с большим числом таких же, как и в случае плоских пластин, ограничений и приближений, которые уже обсуждались в 4.5 и 5.5. Удовлетворение интегральных краевых условий, т. е. условий, налагаемых на равнодействующие силы или моменты, а также перемещения одной поверхности, "такой, как срединная, было бы достаточно для задач, ограничивающихся тем, что было определено понятием тонкие оболочки, но если скажется необходимым удовлетворить в каждой точке поперечных сечений более полные условия, то в большей части задач для оболочек можно применить, достигая весьма высокую точность, вспомогательные методы и решения, которые обсуждались в связи с плоскими плайтинами. Более детальное обсуждение и примеры применения всего сказанного к цилиндрическим оболочкам будет дано в главе 7.  [c.443]


Смотреть страницы где упоминается термин Краевая задача для тонкой цилиндрической оболочки : [c.481]   
Смотреть главы в:

Сопротивление материалов  -> Краевая задача для тонкой цилиндрической оболочки

Сопротивление материалов 1986  -> Краевая задача для тонкой цилиндрической оболочки



ПОИСК



I краевые

Задача краевая

Задача об оболочке

Задачи для цилиндрических тел

Оболочка цилиндрическая

Оболочки тонкие

Тонкая цилиндрическая оболочка



© 2025 Mash-xxl.info Реклама на сайте