Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Геометрическая интерпретация задач динамики

Параллельно с аналитическим методом в механике развивались и геометрические методы, получившие наиболее яркое развитие в работах замечательного французского ученого Пуансо (1777—1859). Он впервые (1803 г.) изложил статику в таком аспекте, в каком ее и теперь излагают во всех высших технических учебных заведениях. Много открытий и геометрических интерпретаций законов механики Пуансо сделал и в кинематике и в динамике. К их числу относится работа Пуансо по изучению геометрическими методами движения тела с одной неподвижной точкой. Эта важная задача механики имеет, как показала С. В. Ковалевская (1850—1891), однозначное решение только в трех случаях 1) движение тела по инерции вокруг центра тяжести (случай Эйлера — Пуансо) 2) движение симметричного тела вокруг точки, лежаш,ей на оси симметрии (случай Лагранжа), и 3) движение не вполне симметричного тела с определенным распределением массы (случай, открытый Ковалевской и названный ее именем).  [c.16]


Придавая весьма важное значение геометрическим интерпретациям и моделированию, Жуковский писал Если могут быть споры о самостоятельной роли геометрии при решении недоступных до сих пор задач динамики, то ее высокое значение в преподавании механики не подлежит сомнению. Ум изучающих весьма часто склонен к формальному пониманию. Я из своего педагогического опыта знаю, как часто запоминаются формулы без усвоения стоящих за ними образов. Как это ни кажется странным, но одним из затрудняющих  [c.127]

Переносим все заданные силы, действующие в рассматриваемый момент времени на звенья механизма, в том числе и силы инерции, Б одноименные точки повернутого плана скоростей, не изменяя при этом величины и направления этих сил, и составляем, далее, уравнение моментов (18.17) всех перенесенных сил относительно полюса плана скоростей, т. е. рассматриваем план скоростей как некоторый рычаг с опорой в полюсе плана скоростей, находящийся под действием всех рассматриваемых сил в равновесии. Подобная геометрическая интерпретация принципа возможных перемещений представляет значительные удобства для решения многих задач динамики механизмов. Метод этот получил название метода Н. Е. Жуковского по имени ученого, которым он был предложен, а рычаг, которым пользуются в этом методе, назван рычагом Чуковского.  [c.445]

Геометрическая интерпретация задач динамики 330 Геометрия нериманова 320, 322, 328, 329  [c.401]

Впервые предлоэюил обилие уравнения двиоюег ния твердых тел с неголономными связями, разработал классическую по простоте и законченности геометрическую интерпретацию случаев движения тела в жидкости, дал решения сложнейших задач аэродинамики и авиации (определение -точки приложения подъемной силы, определение сил при неустановившемся полете, теория механизированного крыла и т. д.) Опубликованием работы О газовых струях положил начало новой области механики — га-зово-й динамике, приобретающей все большее значение с развитием скоростной авиации.  [c.333]

Рассмотрены статика, медленный рост и динамика трещин в сплошных линейно-, нелинейно-упругих и упругопластических телах, а также в средах со структурой — в решетках, армированных (слоистых) материалах, в средах блочной структуры, где обнаруживается отток энергии от края распространяющейся трещины. Большое внимание уделено обсуждению критериев роста трещин, связи между критериями на микро-и макроуровнях. Некоторые выводы, относящиеся к интерпретации решений задач линейной теории упругости и к состоянию у края трещины, получены на основе геометрически точных соотношений для устойчивого нелинейно-упругого материала. Приведены асимптотические решения упругопластических задач, указывающие на возможность устойчивого роста трещины. Рассмотрена двухконстантная теория роста трещин при циклических нагрузках. Представлены решения автомодельных, стационарных и нестационарных задач динамики трещин для до- и сверхрэлеевского, меж-и сверхзвукового диапазонов скоростей их распространения.  [c.2]



Смотреть страницы где упоминается термин Геометрическая интерпретация задач динамики : [c.203]   
Вариационные принципы механики (1965) -- [ c.330 ]



ПОИСК



Геометрическая задача

Геометрическая интерпретация

Динамика ее задачи

Задачи динамики

Интерпретация



© 2025 Mash-xxl.info Реклама на сайте