Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стефана-»Больцмана оптическое

Проблема детектора теплового излучения неотделима от вопроса об излучательных свойствах источника излучения. Спектральные характеристики излучения черного тела, как будет показано, описываются законом Планка. Проинтегрированный по всем длинам волн закон Планка приводит к закону Стефана — Больцмана, который описывает температурную зависимость полного излучения, испущенного черным телом. Если бы не было необходимости учитывать излучательные свойства материалов, оптический термометр был бы очень простым. К сожалению, реальные материалы не ведут себя как черное тело, и в законы Планка и Стефана — Больцмана приходится вводить поправочные факторы, называемые коэффициентами излучения. Коэффициент излучения зависит от температуры и от длины волны и является функцией электронной структуры материала, а также макроскопической формы его поверхности.  [c.311]


И 7 =4,2 К А(7 —0,3%, тогда как для L = мм и Г=1000 К имеем ДI7 10 . В большинстве практических случаев оптической пирометрии эти отличия от закона Стефана — Больцмана незначительны, однако в радиометрии дальней инфракрасной области они становятся существенными.  [c.317]

Некоторые устройства, которые предназначены для исследования объектов с целью обнаружения возможных дефектов при помощи сканирующего пучка излучения оптического диапазона, основаны на поглощении материалами объекта излучения ИК-диапазона оптического спектра. Лучистый поток от источника ИК-излуче-ний, например СОг-лазера, зеркальной сканирующей системой направляется на исследуемый объект. Зеркальная система содержит два зеркала, сканирующих в двух взаимно перпендикулярных плоскостях. Часть излучения, падающего на объект, поглощается и соответствующим образом увеличивает его температуру. При увеличении температуры объект излучает энергию в соответствии с законом Стефана— Больцмана. Если поверхность образца -не имеет дефектов, то все его участки за один промежуток времени излучают одинаковое количество энергии. При наличии дефекта различные уча- стки объекта излучают различное количество энергии. Для контроля и измерения излучательной способности  [c.94]

V —частота оптических колебаний р —плотность, коэффициент диффузного отражения, см. текст а — постоянная Стефана — Больцмана т —среднее время жизни носителей, временной интервал, см. текст  [c.218]

Рассмотрим условия, которым должна удовлетворять оптическая система телескопа и термоприемника, чтобы обеспечить возможность использования закона Стефана-Больцмана для  [c.325]

В области умеренно высоких температур выше точки затвердевания золота (— 10 ° К) для установления температурной шкалы возможно применение газового термометра (см. гл. 4). Для измерения более высоких температур, начиная от нескольких тысяч градусов и выше, практически пригодны только оптические методы, опирающиеся на ту или иную теоретическую зависимость между выбранным параметром, непосредственно измеряемым на опыте, и температурой (формула излучения Планка, закон Вина, закон Стефана — Больцмана, эффект Допплера и т. д.). В зависимости от избранного метода при этом измеряют различные температуры— эффективную , цветовую , яркостную и т. д.  [c.7]

Константа Са может быть определена различными способами путем измерений излучения или по значениям атомных постоянных. Существует три радиационных метода определения константы С2. 1) измерение постоянной Стефана — Больцмана о 2) измерение длины волны с максимальной энергией из кривой спектрального распределения энергии при данной температуре и 3) измерение оптическим пирометром отношения интенсивностей монохроматического излучения при двух температурах. Два первых метода трудно осуществить, так как в первом случае необходимо измерять абсолютные значения интенсивности излучения, а во втором — определять положение довольно плоского  [c.19]


Действие пирометров полного излучения основано на зависимости от температуры полной энергетической яркости тела, описываемой формулой Стефана—Больцмана (7-2-13). Первичный преобразователь пирометра должен быть снабжен теплочувствительным элементом и оптической системой, концентрирующей лучистую энергию тела, на теплочувствительном элементе, степень нагрева  [c.288]

Производительность мартеновской печи (основной показатель любого металлургического агрегата) в значительной мере определяется тепловым режимом плавки или изменением тепловой нагрузки по периодам плавки. Тепловая нагрузка печи представляет собой количество тепла, подводимого в единицу времени к газовому клапану или форсунке (горелке) печи. При правильной организации теплового режима должен быть обеспечен подвод к металлу максимального количества тепла на протяжении всех периодов плавки. В мартеновской печи - 90% тепла факела передается к ванне излучением и лишь остальная часть приходится на конвективную теплопередачу. Теплообмен излучением описывается известным уравнением Стефана — Больцмана, которое имеет вид <Э = беп[(7 ф/100) —(Гх/ЮО) ], гдеб — коэффициент, учитывающий оптические свойства кладки и форму рабочего пространства еп — степень черноты пламени 7ф—температура факела —температура воспринимающей тепло поверхности (холодных материалов). Из уравнения следует, что на теплопередачу влияют температура факела и шихты, степень черноты пламени и оптические свойства кладки. Интенсивность нагрева шихты тем выше, чем выше температура факела и степень черноты пламени и ниже температура холодной твердой шихты. Температура факела определяется температурой сгорания топлива степень черноты факела —карбюризацией пламени. Теоретическую температуру сгорания топлива можно определить по формуле т= (Qx Qф.т-ЬQф.в <7дис)/1 Ср, где Qx — химическое тепло топлива (теплота сгорания) ( ф.т—физическое тепло нагретого в регенераторах топлива <Эф.в — физическое тепло нагретого в регенераторах воздуха (7дис — тепло, потерянное при диссоциации трехатомных (СО2, Н2О) газов V—удельный объем продуктов сгорания при сжигании данного топлива Ср—удельная теплоемкость получившихся продуктов сгорания.  [c.153]

В к-ром согласно международному соглашению константа ( 2= 1,432 см °С, а Т1 соответствует золота 1 336° К. При интегрировании ур-ия Планка получается выражение общего количества энергии, испускаемой черным телом для всех длин волн, которое отвечает известному закону полной радиации Стефана—Больцмана Е а Т , где ЧУ—константа, а Т—абсолютная температура. Существует два типа пирометров, основанных на излучении. В одном случае сравниваются интенсивность излучения или практически яркость для определенной длины волны с яркостью нормального излучателя и в другом—измеряется общее количество энергии излучения накаленного тела. Первые назьшаются оптическими, а вторые — радиационными пирометрами. Следует отметить, что в, то время как общее излучение повышается с Г лишь в 4-ой степени, интенсивность излучения в определенной длине волны возрастает в степени 15— 0 от °. Т. о. измерения с помощью оптических пирометров оказываются несравненно более чувствительными. Однако преимущество радиационных пирометров заклю- чается в объективности. их показаний и в возможности благодаря э ому автоматической регистрации. Поэтому непригодные в качестве прецизионных приборов, они с успехом служат для контроля Г-ного режима в -заводских установках. Сущность устройства их состоит в том, что энергия излучения накаленного тела концентрируется на воспринимающей поверхности и здесь, превращаюсь в теплоту, дает термоэлектрич. или другой эффект. В качестве собирательного при-  [c.227]

Следует заметить, что нельзя провести резкую границу между явлениями, подчиняющимися феноменологической термодинамике, и флуктуационными явлениями . Так, например, тепловое излучение мы рассматривали в 25 и 26 с точки зрения феноменологической термодинамики. При этом состояние этого излучепия мы характеризовали так, как это делается в оптике,— его интенсивностью или его энергией. Выведенные в 25 и 26 законы Кирхгофа и Стефана — Больцмана, а также упомянутая там формула Планка относятся, в свете сказанного в настоящем параграфе, к средним значениям интенсивности и энергии излучения. Однако в любой физической системе присутствует излучение, другими словами, электромагнитное поле не только оптических частот, но и более низких радиочастот. В области радиочастот наличие этого излучения проявляется в явлениях, называемых обычно тепловыми флуктуациями тока и тепловьпги шумовыми (или флуктуационными) электродвижущими силами . Эти явления обычно рассматриваются как явления флуктуацион-ные, и при их теоретическом разборе применяются методы статистической физики. Это объясняется не разной природой явлений в оптическом диапазоне частот, с одной стороны, и радиодиапазоне — с другой, а только тем, что в этих двух диапазонах пас интересуют разные физические величины.  [c.112]


Приме.чания — температура приемника излучения ф — температура фона е — излучательная (поглощательная) способность чувствительного слоя приемника а =5,67-10 8 Вт-м -К" — постоянная закона Стефана — Больцмана А — площадь чувствительного слоя А—1,38 10 Вт-с К — постоянная Больцмана с — теплоемкость приемника —постоянная тепловых потерь приемника в окружающую среду f — частота модуляции Л=6,62-10 з Вт с — постоянная Планка е—К —заряд электрона 0 — установившееся значение тока в цепн — время жизни носителей N — общее число носителей в зоне проводимости а — подвижность носителей а, р, А постоянные коэффициенты для конкретного типа приемника V—оптическая частота излучения V — напряжение питания приемника v — монохроматический поток излучения.  [c.37]


Смотреть страницы где упоминается термин Стефана-»Больцмана оптическое : [c.193]    [c.24]    [c.201]    [c.80]    [c.284]    [c.150]    [c.55]    [c.112]   
Основы оптики (2006) -- [ c.132 ]



ПОИСК



Стефана-Больцмана

Стефанит



© 2025 Mash-xxl.info Реклама на сайте