Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Навье — Стокса уравнения усложнения

При теоретическом подходе к изучению разрывов вводят в рассмотрение более сложные детализированные модели среды, учитывающие физические механизмы, обеспечивающие непрерывность изменения величин. Для газа, например, такими усложненными по сравнению с уравнениями газовой динамики моделями могут служить уравнения теплопроводного вязкого газа Навье-Стокса или уравнения Больцмана. Гиперболические уравнения возникают как предельный случай, когда внешний масштаб задачи L становится много больше внутреннего масштаба, определяющего ширину областей с быстрым изменением решения. При этом в уравнениях можно проводить упрощения, связанные с отбрасыванием малых членов. В частности, в областях, где функции меняются на расстояниях порядка L, при достаточно больших L можно пренебрегать высшими производными по сравнению с низшими, поскольку каждое дифференцирование добавляет к порядку величины множитель 1/L. Члены с высшими производными остаются существенными в узких зонах с  [c.78]


Обратимся теперь к усложнениям обычных уравнений Навье — Стокса.  [c.458]

Так, например, система дифференциальных уравнений Эйлера для гидродинамики является математической моделью, описывающей движение идеальной жидкости. Усложнение модели за счет учета сил вязкого трения приводит к системе дифференциальных уравнений Навье-Стокса.  [c.102]

Широкоупотребительное усложнение уравнений Навье — Стокса для нестационарных движений состоит в применении уравнений для возмущений (см., например, Нагель [1967], У. П. Кроули [19686]). Например, для изучения неустойчивости по отношению к сдвигу в несжимаемом пограничном слое переменные о]), можно представить в виде  [c.459]

Обсудим, наконец, усложнения уравнений Навье — Стокса, вытекающие из различного выбора математического описания лагранжевы методы, методы сращивания и методы Монте-Карло.  [c.463]

В методах сращивания предпринимаются попытки численно срастить решения в областях, в которых приняты различные предположения для упрощения системы уравнений Навье — Стокса. Например, расчет течения в ближнем следе за снарядом можно проводить по теории течения невязкой жидкости (метод характеристик) для внешнего течения, по теории пограничного слоя оторвавшегося сдвигового слоя и, возможно, по уравнениям несжимаемой жидкости в области возвратного течения. Не говоря уже об очевидном усложнении программирования, в подобных методах имеются принципиальные трудности, связанные с условиями стыковки решений, которые должны быть удовлетворены (или, наоборот, выборочно опущены) поперек границ, с итерационным положением и описанием границ между областями (например, может ли линия тока, отделяющая область возвратного течения, аппроксимироваться кривой второго порядка, начинается ли она в вершине острого угла на поверхности тела ), с устойчивостью глобальных итераций при сращивании. Несмотря на все эти трудности, было опубликовано некоторое число работ, содержащих хорошие численные решения, полученные методами сращивания.  [c.463]

В приведенном выше обзоре работ, в которых асимптотический подход в пределе больших чисел Рейнольдса позволяет перейти от уравнений Навье-Стокса к сравнительно более простым уравнениям свободно взаимодействующего пограничного слоя, значительное место занимают различные аспекты теории гидродинамической устойчивости. То обстоятельство, что рассмотрение нижней ветви нейтральной кривой устойчивости пограничного слоя Блазиуса приводит к трехпалубной структуре возмущенного поля скоростей, является, по сделанному в [51] замечанию, достаточно неожиданным. Для верхней ветви нейтральной кривой структура возмущений претерпевает дальнейшие усложнения и включает пять подобластей [173-177]. Более того, именно асимптотическая трактовка задачи устойчивости, как подчеркивается в [175], имеет рациональный базис, поскольку только в пределе больших чисел Рейнольдса основное течение приобретает форму пограничного слоя.  [c.12]


Примирение теории непрерывных переходов с теорией, в которой получаются и изучаются разрывные решения, обосновывается допущением о возможности получения разрывных решений в рамках данной простой модели как предела непре-рьшных решений той же задачи для последовательности усложненных моделей при непрерывном переходе коэффициентов в уравнениях движения усложненной модели к коэффициентам уравнений упрощенной модели. Например, при устремлении коэффициентов вязкости к нулю уравнения Навье — Стокса для вязкого газа переходят в уравнения Эйлера для идеального газа.  [c.354]

Наиболее очевидным усложнением системы уравнений Навье — Стокса является добавление членов и уравнений, описывающих дополнительные физические факторы типа излучения, химических реакций, магнптогидродинамических эффектов, ко-риолисовой силы, многокомпонентности жидкости, ионизации,релятивистских эффектов п т. п. Эти уравнения зачастую могут  [c.459]


Вычислительная гидродинамика (0) -- [ c.446 , c.458 , c.464 ]

Вычислительная гидродинамика (0) -- [ c.446 , c.458 , c.464 ]

Вычислительная гидродинамика (1980) -- [ c.446 , c.458 , c.464 ]



ПОИСК



Навой 97, XIV

Навье

Навье уравнение

Навье—Стокса

Стокс

Стокса Навье — Стокса

Стокса уравнение

Уравнение Навье—Стокса



© 2025 Mash-xxl.info Реклама на сайте