Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Молекулярного поля константа

Ми— Грюнайзена уравнения 156 Многоатомная молекула 207, 221 Молекулярного поля константа 327, 337  [c.446]

Соотношение между константой обмена А к коэффициентом молекулярного поля Вейсса Ы-гг можно установить, приравнивая обменную энергию ферромагнетика к его магнитостатической энергии  [c.16]

Свойства симметрии и система обозначений. В двухатомной молекуле существуют компоненты сильного электрического поля вдоль межъядерной оси, которые определяют симметрию электронных волновых функций. В атомных волновых функциях при связи Ь — суммарный орбитальный момент импульса электронов Ь является константой движения и, следовательно, квантуется. В атомах компонента Ь вдоль некоторого направления, т. е. М, не влияет на уровень энергии, за исключением тех случаев, когда имеется внешнее магнитное (эффект Зеемана или Пашена — Бака) или электрическое ноле (эффект Штарка). Даже при самых сильных полях, получаемых в лабораторных условиях, расщепление энергетических уровней (для различных значений М при фиксированном Ь) меньше, чем 10" эв. В противоположность этому энергии молекулярных электронов почти полностью определяются компонентой момента импульса электронов вдоль оси молекулы и эти энергетические уровни отделены друг от друга на несколько электрон-вольт. Такое различие получается из-за того, что локальные электрические поля в пределах молекулы значительно пре-  [c.103]


В последнее время существенно повысился интерес к исследованию влияния электронно-ядерных (ЭЯ) взаимодействий на структуру спектров молекул. Обычно КВ-задачи решаются в приближении Борна—Оппенгеймера (В-0) в предположении, что движение ядер происходит в поле с некоторым эффективным потенциалом, который определяется из решения электронной задачи. При этом полная волновая функция системы представляется в виде произведения электронной волновой функции на ядерную. Такое решение задачи, будучи лишь приближением к реальной картине, может не давать точного представления о всех особенностях КВ-спектра конкретных молекул. К настоящему времени известен ряд работ, например, [2, 4, 18, 45, 52], результаты которых выходят за рамки приближения Б-0. Более точные приближения дают заметное улучшение расчетов изотопической зависимости нормальных частот, электронного изотопического сдвига, поправок в дипольный и квадрупольный момент и некоторых других эффектов. Нужно отметить, что в большинстве работ рассмотрены двухатомные молекулы. Интерес представляет также вопрос о поправках к приближению Б-0 для многоатомных молекул. Например, как влияют отклонения от него на КВ-гамильтониан каким образом формируются молекулярные и спектроскопические параметры (эффективные моменты инерции, нормальные частоты, константы ангармоничности и т. д.) может ли вызвать ЭЯ-взаи-модействие появление линий, соответствующих запрещенным переходам, и каково его влияние на вероятности разрешенных Эти и некоторые другие вопросы требуют по крайней мере качественного изучения отклонения от приближения Б-0.  [c.30]

Обме]тые константы. /,-у определяют темп-ру Т( , при к-рой возникает ма1 н. упорядочение кристалла. Для ферромагнетика при учёте в гамильтониане (1) взаимоде1ктвия только ближайтних соседних ионов и в приближении молекулярного поля темп-ра Tq и обменная константа J связаны соотиошеннеи  [c.421]

В приближении молекулярного поля, описанного Юди и др. в работе [57], суш ествует универсальная константа Рог, Которая связывается с объемом кристаллической решетки V, приходяш имся на один элементарный диполь, соотношением  [c.378]

Впервые теоретич. описание св-в ферримагнетиков было дано Л. Неелем (1948) в рамках теории молекулярного поля. Оказалось, что теория молекулярного поля может объяснить гораздо больше св-в ферримагнетиков, чем металлич. ферромагнетиков (значение величины (7 при 7 =0, закон Кюри —Вейса при Г>0 ДР-)- К фер-римагнетикам применима также и теория спиновых волн. В согласии с этой теорией намагниченность многих ферримагнетиков при низких темп-рах следует закону Блоха / у=/5о(1—аГ где а — константа, /50— значение при Г = 0. Магн. теплоёмкость ферримагнетиков растёт по закону Г  [c.806]


Экспериментальные исследования в Р. г. а. приобретают особое значение в связи со сложностью тео-ретпч, расчетов и необходимостью определения ршда эмпирич. констант, входящих в практич. методы расчета тепловых и аэродинамич. характеристик. Для определения а и исследования механизма рассеяния молекул пользуются молекулярными пучками, создаваемыми с помощью ионных, плазменных, импульсных, ударных или комбинированных установок, в к-рых воссоздаются условия полета тела с космич. скоростью на больших высотах. Для исследования в области течения со скольжением применяются аэродинамич. трубы низкой плотности. При статич. давлениях < 0,1 мм рт. ст. оптич. методы (метод полос Теплера, интерферометрич. метод) становятся очень малочувствительными и для визуализации потока и количественных измерений полей плотностей используются. чффекты послесвечения возбужденного азота, тлеющий разряд, поглощение коротковолновой Х  [c.328]


Смотреть страницы где упоминается термин Молекулярного поля константа : [c.654]    [c.329]    [c.327]    [c.337]    [c.696]    [c.169]    [c.618]    [c.416]    [c.79]    [c.304]    [c.286]    [c.689]    [c.404]    [c.256]    [c.12]   
Статистическая механика (0) -- [ c.327 , c.337 ]



ПОИСК



Константа

Молекулярное поле

Молекулярные константы для

Молекулярный вес



© 2025 Mash-xxl.info Реклама на сайте