Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Среднее по ансамблю квантовое классическое

Обычно это соответствует простым жидкостям, но всегда можно оценить квантовые поправки. Классическое предположение сводится к пренебрежению коммутативностью операторов Г1(0) и Гх 1) в (190) и вместо применения (192) как средней термической мы усредняем по всему классическому каноническому ансамблю в фазовом пространстве.  [c.85]

Как было показано в гл. 8, 1, канонический ансамбль может быть выведен из микроканонического ансамбля, однако его можно получить и непосредственно. Если не стремиться к большой строгости, то вывод оказывается очень простым. Рассмотрим ансамбль М систем такой, что средняя по всем системам энергия равна данному числу 1У. Найдем наиболее вероятное распределение систем по энергиям в предельном случае Ж->-оо. По определению ансамбля, системы не взаимодействуют друг с другом, могут рассматриваться раздельно и являются, следовательно, вполне различимыми. Таким образом, наша задача математически тождественна задаче о наиболее вероятном распределении в классическом идеальном газе. Как мы знаем, решением является распределение Максвелла — Больцмана значение энергии Е встречается среди систем с относительной вероятностью где р определяется средней энергией С/. Такой ансамбль является каноническим ансамблем. Очевидно, что эти рассуждения в равной мере справедливы и в классической, и в квантовой статистической механике.  [c.229]


Здесь следует обратить внимание на аналогию между такой интерпретацией статистической механики и интерпретацией обьга г ной квантовомеханической теории. Квантовая механика также утверждает, что теоретически предсказуемы только средние значения наблюдаемых. Однако статистический характер квантовой теории определяется совершенно иными физическими причинами. Этот немаловажный факт можно понять, если опять о15ратиться к уже рассматривавшемуся простому эксперименту с потоком тепла, но дать ему на сей раз квантовомеханическую интерпретацию. Пусть теперь металл характеризуется микроскопически некоторой определенной волновой функцией, удовлетворяющей уравнению Шредингера. Для данного состояния можно вычислить квантовомеханическое среднее значение энергии и проследить эволюцию во времени этого значения. Однако волновая функция системы многих тел чрезвычайно сложна. Если в нулевой момент времени заданы лишь макроскопические условия (например, градиент температуры), то в нашем распоряжении имеется огромное число возможных волновых функций данной системы, совместимых с заданными макроскопическими условиями. Каждой из этих разрешенных функций, т.-е. состояний, соответствует вполне определенное квантовомеханическое среднее значение энергии эти значения обычно отличаются одно от другого. Следовательно, мы оказываемся в том же положении, как и в классическом случае. Рассуждая далее по аналогии, припишем соответствующ ша образом подобранные веса каждому возможному состоянию системы. Определим теперь наблюдаемое значение энергии как усредненное по ансамблю значение квантовомеханических средних величин микроскопической энергии. Таким образом, ясно, что описание квантовостатистической системы подразумевает два последовательных процесса усреднения первое усреднение связано с принципом неопределенности Гейзенберга, а второе — с неопределенностью начального состояния системы многих тел.  [c.51]

Соответственно, мы приходим к следующему сценарию движения квантовой броуновской частицы. При любом начальном состоянии, в том числе когерентном, частица эволюционирует в соответствии с уравнением Шрёдингера с поглощением, описывающим исчезновение когерентности. На этом фоне возникают коллапсы волновой функции в любом конкретном представителе статистического ансамбля. Первый же коллапс в каждом данном представителе ансамбля уничтожает начальную волновую функцию и порождает волновой пакет с размером Ь л/ЯХв, где Я — длина пробега легких частиц, а Яв — их средняя длина волны де Бройля. Последующие коллапсы дополнительно уменьшают недиагональные члены матрицы распределения, но статистическое поведение броуновской частицы определяется уже не не диагональной частью, а классическим кинетическим уравнением для функции распределения, т.е. диагональной частью матрицы распределения.  [c.211]



Смотреть страницы где упоминается термин Среднее по ансамблю квантовое классическое : [c.21]    [c.180]   
Статистическая механика (0) -- [ c.160 ]



ПОИСК



Ансамбль

Ансамбль квантовый

Газ классический

Классический ансамбль

Среднее квантовое

Среднее классическое

Среднее по ансамблю квантовое

Средние по ансамблю

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте