Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругая линия балки или стержня

Стержень (рис. 137, а) защемлен одним концом. Ко второму приложена сила Р, которая обладает тем свойством, что при изгибе стержня направлена постоянно по касательной к упругой линии балки. Такая сила может быть реализована, например, путем установки на конце стержня порохового ракетного двигателя (рис. 137, б).  [c.60]

Рассмотрим защемленный стержень (рис. 59). С него мы и начали разговор об упругой линии, а в выражении кривизны ранее пренебрегли величиной у за ее малостью. Теперь, рассматривая поведение стержня в области больших перемещений, мы такого упрощения уже сделать не можем. Но это не все. При малых перемещениях мы имели возможность считать изгибающий момент в каждом сечении независящим от прогибов балки. Теперь же, как это видно из рис. 59, изгибающий момент меняется в зависимости от того, сколь заметно изменилась форма упругой линии, и задача, таким образом, становится явно нелинейной. При ее решении мы уже не можем придерживаться принципа начальных размеров и принципа независимости действия сил.  [c.65]


О п р еделение 5.1. Изгибом стержня называется такой вид его деформации, при котором ось изменяет свою кривизну. Деформированная ось стержня называется упругой линией. При изгибе стержень также называют балкой, ш  [c.120]

Эйлера как математика интересовала прежде всего геометрическая форма упругих линий изгиба. Без серьезного обсуждения он принял теорию Якова Бернулли, утверждавшую, что кривизна изогнутой оси балки в каждой ее точке пропорциональна изгибающему моменту в этой же точке. Основываясь на этом допущении, он исследовал форму кривых, которые принимает тонкий гибкий упругий стержень при различных условиях его загружения. С главными результатами работы Эйлера в зтой области можно  [c.43]

Под стержнем понимают упругое тело, два размера которого малы по сравнению с третьим, обладающее конечной жесткостью на растяжение, кручение и изгиб. Благодаря тому обстоятельству, что толщина стержня является малой по сравнению с его характерной длиной, задача об изгибе стержня сводится к исследованию изгиба нейтральной линии, т.е. к одномерной задаче. Стержень, работающий на изгиб, часто называют балкой. Говоря о распространении изгибных волн, обычно имеют в виду такой тип колебаний стержня, при которых части стержня подвергаются изгибу, а элементы нейтральной оси в процессе колебаний совершают движение в поперечном направлении.  [c.30]

Пусть, например, стержень ВС в статически неопределимой системе (рис. 2.65) был изготовлен короче проектного размера ва малую величину 5. При сборке системы придется растянуть этот стержень и прикрепить его к балке. Сокращаясь (в силу своей упругости), стержень несколько приподнимет конец балки, что вызовет сжатие стержня ВК. После сборки балка займет положение, показанное на рис. 2.65 штриховыми линиями. Стержень ВС будет при этом растянут на величину А/вс> меньшую 5.  [c.89]

Изгиб балок постояннога сечения под действием поперечных сил. Рассмотрим гибкую призматическую балку или стержень постоянного поперечного сечения, изгибаемые поперечными силами в одной из главных плоскостей инерции. Проведем ось X через центры тяжести поперечных сечений и предположим, что плоскости этих сечений в гибкой балке остаются плоскими и ортогональными к упругой линии балки. Волокна на расстоянии z от нейтральной оси пп, на которой деформации изгиба е и нормальные [ пряжения изгиба а равны нулю  [c.331]

В прикладных задачах статики стержней часто внешние силы, действующие на стержни, зависят от перемещений стержня (или от их первых двух производных). Классическим примером являются стержни на упругом основании (рис. 2.1). При нагружении стержня возникают со стороны основания распределенные силы, зависящие от перемещений (прогибов) стержня. Стержни (вернее конструкции или элементы конструкций, которые сводятся к модели стержня) из разных областей техники показаны на рис. 2.2 — 2.6. Упругий металлический элемент прибора, находящийся в магнитном поле, изображен на рис. 2.2. Сила притяжения (распределенная) зависит от прогибов стержня аналогично случаю балки на упругом основании. Стержень, находящийся на вращаю.щейся платформе (см. рис. 2.3), нагружается силами, зависящими от прогибов, причем в этом случае наряду с нормальной распределенной нагрузкой qy (у) появляется и осевая распределенная нагрузка у). При продольно-поперечном изгибе (см. рис. 2.4) в произвольном сечении стержня возникает момент от осевой силы, пропорциональный прогибу. К этому классу относятся задачи статики трубопроводов, зашолненных движущейся жидкостью. При поперечном изгибе трубопровода (см. рис. 2.5) из-за появляющейся кривизны осевой линии стержня возникают распределенные силы, обратно пропорциональные радиусу кривизны. К этому классу можно причислить задачи, относяшд1еся к плавающим объектам и сводящиеся к схеме стержней (см. рис. 2.6), например понтон.  [c.33]



Математическая теория упругости (1935) -- [ c.151 , c.354 , c.399 ]



ПОИСК



Балки Линии упругие

Стержни упругие

Стержни упругие на упругих

Стержни — Стержни упругие

Упругая линия

Упругая линия стержня



© 2025 Mash-xxl.info Реклама на сайте