Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лазерная спектроскопия флуоресценции

ГЛАВА 6. ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ ФЛУОРЕСЦЕНЦИИ  [c.146]

Заслуживает внимания тот факт, что использование лазеров в спектроскопии определяется относительной простотой регистрации сигнала, несущего информацию об исследуемом явлении. Высокая спектральная плотность привела к появлению лазерной спектроскопии, основанной на комбинационном рассеянии, и методов инфракрасной флуоресценции с высоким временным разрешением, а также измерений, основанных на поглощении излучения. Высокая степень когерентности и узость полосы излучаемых частот позволяют использовать лазер для гетеродинной спектроскопии и спектроскопии, основанной на рассеянии света.  [c.218]


Лазерная спектроскопия на основе двойного резонанса и флуоресценции обеспечивает очень высокое разрешение по энергии, например в процессах обмена колебательной энергией между селективно возбужденными и не-  [c.221]

Подлинную революцию в молекулярной спектроскопии совершили оптические квантовые генераторы когерентного излучения — лазеры, впервые созданные в 1960 г. В результате существенно расширились возможности техники спектроскопии (были разработаны разного типа высокоинтенсивные когерентные монохроматические источники света в широком диапазоне длин волн, работающие в импульсном и непрерывном режиме, лазеры, перестраиваемые по длинам волн, и т. д.) качественно изменились многие методики классической спектроскопии (спонтанное комбинационное рассеяние света, флуоресценция, резонансное комбинационное рассеяние света, спектры возбуждения и т. д.) и, самое главное, были созданы принципиально новые методы исследования вещества (обращенное комбинационное рассеяние, когерентное активное комбинационное рассеяние света, внутри-резонаторное поглощение и т. д.). Сейчас еще трудно предсказать все возможности дальнейшего развития лазеров. Ясно одно, что чувствительность, разрешающая способность, временное разрешение и т, д, изменились всего за полтора десятилетия настолько, что многое, казавшееся ранее фантастичным, как, например, регистрация одиночных атомов в газовой фазе, уже реализовано. У лазерной спектроскопии молекул многое впереди. Одной из сдерживающих причин практической реализации ее идей является сложность их внедрения в серийное производство.  [c.10]

Рассмотрению современных экспериментальных методов абсорбционной спектроскопии атмосферы, обладающих высокими чувствительностью и спектральным разрешением уникальных комплексов лазерных спектрометров видимого и ИК-Диапазона посвящена пятая глава. В шестой главе дан краткий обзор современного состояния методов и средств исследования спектров комбинационного рассеяния и флуоресценции атмосферных газов. Обзор оригинальных экспериментальных результатов исследований спектров поглощения атмосферы, выполненных на лазерных спектрометрах в ИОА СО АН СССР, представлен в седьмой главе. Последняя восьмая глава освещает возможные приложения высокоточной спектроскопической информации, получаемой современными методами лазерной спектроскопии, в задачах атмосферной оптики, а также вопросы создания автоматизированных систем на базе ЭВМ для исследования взаимодействия излучения с молекулярной атмосферой.  [c.6]


Спектр флуоресценции при селективном лазерном возбуждении молекул имеет относительно простую для идентификации структуру (особенно для двухатомных молекул). Линии флуоресценции можно разрешить с помощью серийных спектрографов, требования к экспериментальному оборудованию менее строгие, чем к аппаратуре абсорбционной лазерной спектроскопии.  [c.149]

Высокая спектральная плотность лазерного излучения характеризуется не только большим количеством энергии, передаваемой посредством пространственно узкого луча, но также очень узкой полосой частот, в пределах которой концентрируется излучение. В спектроскопии, основанной на анализе спектров флуоресценции, интенсивность последней зависит от спектральной плотности поглощенного излучения. В табл. 30 приведены характеристики излучения некоторых типов лазеров и обычных источников света. Маломощный Не—Ме-лазер имеет спектральную плотность излучения почти на четыре порядка выше, чем наиболее интенсивные некогерентные источники света.  [c.217]

Короткие, интенсивные, узкополосные лазерные импульсы являются хорошим средством для возбуждения молекул на определенные энергетические уровни. Энергия возбуждения может расходоваться либо на излучение (флуоресцирующая эмиссия), либо на поглощение возбужденными частицами (двойная резонансная спектроскопия). На рис. 130 показан спектр флуоресценции молекулы Ja, возбужденной на длине волны 1 = 5145 А от лазера на аргоне [238]. Полосы, обозначенные 43-0, 43-1 и 43-2, представляют собой резонансно флуоресцирующий контур.  [c.220]

В предыдущем параграфе мы убедились, что при селективном лазерном возбуждении можно получать структурные спектры флуоресценции. Однако этим методом практически невозможно исследовать полосу в области чисто электронной БФЛ, если синглетный переход в молекуле разрешен, и поэтому ее возбужденное электронное состояние имеет короткое время жизни. В этом параграфе мы рассмотрим второй метод селективной спектроскопии — метод выжигания стабильных спектральных провалов [6, 7, 61]. Этот метод позволяет исследовать БФЛ примесных центров. Он получил очень широкое распространение в последнее десятилетие, так как доказал свою высокую эффективность.  [c.171]

По флуоресценции загрязняющих и примесных газов, встречающихся в атмосфере, имеется обширная литература. Ряд молекул, таких как N02, 502, N0, ОН и некоторые другие, изучен достаточно полно, по другим молекулам налицо нехватка информации (особенно по скоростям тушения в воздухе) чтобы оценить величину сечения рассеяния. В табл. 6.2, составленной "в [10] на основе литературных данных, опубликованных с 1972 г. до 1985 г., в обобщенном виде приведены данные о спектрах люминесценции молекул, представляющих интерес как объект контроля. В табл. 6.3, также заимствованной из [10], приведены результаты оценок концентрационной чувствительности метода лазерной флуоресцентной спектроскопии при анализе малых примесей в воздухе, которые подчеркивают отмеченную ранее высокую чувствительность метода.  [c.153]

Обсуждаются теоретические основы спектроскопии одиночных молекул. Проводится анализ достоинств и недостатков одно- и двухфотонных методов счета, применяемых в спектроскопии одиночного примесного центра. Представлены теоретические основы традиционных методов селективной спектроскопии примесных центров в полимерах и стеклах, таких как выжигание спектральных провалов и селективно возбуждг1емой флуоресценции. Излагается динамическая теория спектральной диффузии, обусловленной туннельными переходами в низкотемпературных полимерах и стеклах, а также теория сверхбыстрой фазовой релаксации примесных центров, проявляющейся в неэкспоненцигшьном двух- и трехимпульсном фемтосекундном фотонном эхе. Рассмотрены многочисленные примеры применения теоретических формул, выведенных в книге, для обработки конкретных экспериментальных данных, добытых методами селективной лазерной спектроскопии.  [c.2]

В других областях, где отсутствовали возможности применить термопары и радиационные пирометры, разработка и применение лазерных методов проводилась давно. При исследованиях горячей плазмы активные бесконтактные методы измерения температуры также начали применяться на 20-25 лет раньше [1.10], поскольку в этой области не было никакой возможности адаптировать традиционные методы из-за высокой тепловой нагрузки на термозонд, влияния распыляемого зонда на параметры плазмы, а также малой оптической толщины плазмы (при этом спектр излучения существенно отличается от равновесного). Десятки лет проводится термометрия газовых и плазменных потоков с высоким временным разрешением (нано- и микросекундный диапазоны) методами лазерной интерферометрии, спектроскопии когерентного антистоксова рассеяния света (КАРС), лазерно-индуцированной флуоресценции, поскольку традиционные методы не обеспечивают такого быстродействия, какое достигается с помощью импульсных лазеров  [c.10]


В яауч. исследованиях часто проводят МСА неустойчивых и короткоживущих молекул, а также анализ промежуточных продуктов хин. реакций и изучение их кинетики. Для этой цели разработаны скоростные методы возбуждения и регистрации спектров. Так, с помощью фурье-спектрометров получают ИК-спектры за время до 10 с, при импульсном лазерном возбуждении — спектры комбинац. рассеяния за время л-Ю с, спектры поглощения и флуоресценции за время с и даже 10 с (см. Фемтосекундная спектроскопия).  [c.620]


Смотреть страницы где упоминается термин Лазерная спектроскопия флуоресценции : [c.147]    [c.359]    [c.237]   
Атмосферная оптика Т.3 (1987) -- [ c.146 ]



ПОИСК



Лазерная спектроскопия

Лазерная спектроскопия флуоресценции и комбинационного рассеяния

Лазерное (-ая, -ый)

Спектроскоп

Спектроскопия

Флуоресценция



© 2025 Mash-xxl.info Реклама на сайте