Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распределение интенсивности колебательная структура

Наиболее длинноволновая область поглощения СН3 расположена вблизи 2160 А. Для этой области поглощения характерны два диффузных максимума. Соответствующая полоса в спектре поглощения СВз, расположенная при 2140 А, имеет гораздо более четкий контур с частично разрешенной тонкой структурой (фиг. 96). К этой полосе примыкают три очень слабые полосы как со стороны длинных, так и со стороны коротких длин волн. Наличие в системе единственной интенсивной полосы указывает на то, что конфигурация молекулы в верхнем и нижнем электронных состояниях должна быть практически одной и той же. Тонкая структура полосы может быть полностью объяснена, если полоса является параллельной полосой симметричного волчка (фиг. 97). Чередование интенсивности линий в полосе и, в частности, очень низкая интенсивность линии Л (0) свидетельствуют о том, что по крайней мере в одном из двух участвующих в электронном переходе состояний молекула имеет плоскую конфигурацию, так как чередование интенсивности линий в подполосе ЛГ = О (фиг. 97) может наблюдаться только в случае симметрии 1>з . Таким образом, анализ распределения интенсивности в колебательной и вращательной структуре рассматриваемой системы приводит к выводу, что молекула должна иметь плоскую структуру в обоих электронных состояниях, участвующих в переходе. Следует, правда, отметить, что нельзя исключить возможность того, что структура молекулы СН3 слегка отклоняется от плоской конфигурации, но лишь в пределах, оставляющих возможность для появления инверсионного удвоения, столь большого по величине, что в спектре поглощения наблюдается лишь одна инверсионная компонента.  [c.523]


Частотный спектр генерации СОг-лазера имеет достаточно сложный вид. Причиной этого является наличие тонкой структуры колебательных уровней, обусловленной существованием еще одной степени свободы молекулы СОг-вращения. Из-за вращения молекулы каждый изображенный на рис. 4.1 колебательный уровень распадается на большое число вращательных подуровней, характеризуемых квантовым числом / и отстоящих друг от друга на величину энергии А вр, ооь юо, kT . В результате интенсивного обмена энергий между вращательной и поступательной степенями свободы молекул в СОг устанавливается больцмановское распределение частиц по вращательным состояниям, описываемое урав-  [c.120]

При этом комбинационный спектр состоит из трех ветвей 3( 1 = +2), Q(AJ = 0) и 0(Л/ = —2)—и чисто вращательной структуры с центром около возбуждающей длины волны (при Ау = 0). в работе [83] выполнены теоретические расчеты распределения колебательно-вращательных комбинационных линий в спектре молекулы N2 при 300 К и Аи = - -1 (стоксов сдвиг). Результаты расчетов приведены на рис. 3.21. По оси ординат отложены значения дифференциального сечения рассеяния для каждой из комбинационных компонент, соответствующих колебательному переходу у==0->1. Все линии р-ветви (А/ = 0) лежат очень близко друг к другу и обычно не могут быть разрешены спектральным прибором. 5- и 0-ветви (А/ = 2) хорошо разделены и проявляются в виде боковых полос интенсивной линии с А/ == 0. Следует отметить, что хотя вариации температуры влияют на интенсивность 5- и 0-ветвей, влияние на О-ветвь часто оказывается пренебрежимо малым.  [c.120]

Вибрационную природу максимумов электронных полос можно подтвердить, внимательно сравнив структуры спектров поглощения и испускания. В ряде соединений имеется определенное сходство в расположении, а иногда и распределении интенсивности колебательных максимумов обоих спектров, их зеркальная симметрия. В табл. 4 сопоставлены, например, разности Уп—Уе частот максимумов полос поглощения и испускания радикала трифе-нилметана, измеренных при низкой температуре [3]. Их симметрия свидетельствует о колебательном происхождении структуры спектров.  [c.69]

Спектром испускания (флуоресценции) называется распределение интенсивности испускаемой веществом энергии по частотам (или длинам волн). Вид спектра флуоресценции определяется составом и строением флуоресцентного центра, а также влиянием растворителя. Как и длинноволновая полоса поглощения, спектр флуоресценции сложных молекул не имеет колебательной структуры и представляет собой одну довольно широкую бесструктурную полосу (рис. 34.4). Такое строение полос поглощения и флуоресценции свидетельствует о том, что колебательные уровни 1[ижнего и верхнего электронных состояний не дискретны, а образуют непрерывную последовательность.  [c.251]


Колебательная структура электронных спектров. Поверхности потенц, энергии и соответствующие им системы колебат. уровней разл. электронных состояний иогут существенно отличаться друг от друга, поэтому колебат. структура электронных переходов подчиняется довольно сложным правилам отбора и электронно-колебат. спектр сильно отличается от чисто колебательного. Тем не менее оси. особенности колебат. структуры поддаются не только качеств., но и количеств, анализу. Теоретич. основой этого анализа является Франка — Кондона принцип, позволяюпщй предсказывать распределение интенсивностей полос колебат. структуры,  [c.203]

На рнс. 1.23 видно распределение интенсивностей линий вращательной структуры в колебательно-вращательных спектрах. Оно характерно тем, что с увеличением вращательного квантового числа I интенсивность линий вращательной структуры в Р-и Р-ветвях сначала возрастает, а потом постепенно падает. Такое распределение интенсивностей связано главным образол с заселенностью вращательных состояний (см. 8 и рис. 1.13, в). При увеличении температуры газа заселенность состояний с большими ] увеличивается и соответственно максимумы интенсивностей в Р- и Р-ветвях смещаются в разные стороны от центра полосы. При этом число наблюдаемых линий вращательной структуры увеличивается, а интенсивность линий в максимуме падает. Квантовое число максимума интенсивности оценивается но той же формуле (11.11), что и для чисто вращательного спектра. На  [c.66]

Разрыхляющие электроны (орбитали) 388 Разъединенные атомы (молекулы), принципы построения 283—299 Раснад мономолекулярный 483 Распределение интенсивности аномальное 152, 165, 166 ветви 225, 231, 274 вращательная структура 202, 208, 215, 225, 231, 251, 261, 269, 523 колебательная структура 148, 152, 153, 155, 156, 164, 172, 175, 523 компоненты штарковского расщепления 274  [c.747]

С помощью спектроскопии КАРС можно определить и вращательную температуру молекул. Это можно сделать, измеряя распределения интенсивности либо в чисто вращательном спектре КР молекул, либо в колебательно-вращательных 0-у Р% R- и S-ветвях, либо в разрешенной структуре -полосы спектра КР. Экспериментальная реализация последнего случая обычно п13още, поскольку 2-полосы занимают значительно более узкие спектральные интервалы, чем вращательные крылья колебательных переходов.  [c.288]

Переходы, сопровождающиеся изменением состояния кристаллических колебаний, приводят к образованию в спектре колебательного фона, аналога крыльев в спектре Мёссбауэра. Этот фон может иметь вполне ярко выраженную структуру и даже пики, обусловленные взаимодействием с предельными частотами кристаллических колебаний или псевдолокаль-ными колебаниями. Пики в фоне имеют уже не нулевую ширину, а ширину, определяемую составом волнового пакета кристаллических колебаний, актуального в данном процессе. Распределение интегральных интенсивностей в серии пиков приближенно также описывается вышеприведенной формулой.  [c.24]


Смотреть страницы где упоминается термин Распределение интенсивности колебательная структура : [c.22]    [c.60]    [c.83]    [c.31]    [c.121]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.148 , c.152 , c.153 , c.155 , c.156 , c.164 , c.172 , c.175 , c.523 ]



ПОИСК



Интенсивность распределения

Колебательная структура электронных распределение интенсивности

Колебательные

Структура распределение



© 2025 Mash-xxl.info Реклама на сайте