Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминий и его литой — Механические свойства

Алюминий и его сплавы 402—440 --литой — Механические свойства, 402  [c.539]

Литейные сплавы. Механические свойства литого магния следующие Ста = 115 МПа, 8 = 8%, 30 НВ (кгс/мм ). В литых магниевых сплавах повышения механических свойств добиваются измельчением зерна посредством перегрева расплава или его модифицирования добавками мела или магнезита. При этом в расплаве образуются твердые частицы, становящиеся центрами кристаллизации. Для предотвращения возгорания магниевых сплавов их плавку ведут в железных тиглях под слоем флюса, а разливку — в парах сернистого газа, образующегося при введении серы в струю металла. При литье в песчаные формы в смесь вводят специальные добавки (например, фториды алюминия) для уменьшения окисления магния. Среди литейных магниевых сплавов широкое применение нашли сплавы МЛ5 и МЛ6, отличающиеся повышенными литейными и механическими свойствами (табл. 8.2). Они могут упрочняться как гомогенизацией и закалкой на воздухе (Т4), так и добавочным старением (Тб). Аналогично (по режиму Тб) упрочняются коррозионностойкий сплав МЛ 12 и жаропрочный МЛ 10 (с рабочей температурой до 300 °С).  [c.178]


Свойства магния значительно улучшаются за счет легирования. Алюминий и цинк с массовой долей до 7 % повышают его механические свойства, марганец улучшает его сопротивление коррозии и свариваемость, цирконий, введенный в сплав вместе с цинком, измельчает зерно, повышает механические свойства и сопротивление коррозии, торий улучшает жаропрочность, бериллий уменьшает окисляемость при плавке, литье и термической обработке.  [c.250]

Магний. Самым легким металлом, используемым в промышленности, является магний. Его плотность 1,74 г/см , температура плавления 651 °С, в литом состоянии 0в = 100 Ч- 120 МПа, O — 3,6%. Получают магний из магнезита, содержащего 28,8% магния, и из доломита, содержащего 21,7% магния, а также из других магниевых руд. Металлический магний получают в основном путем электролиза магния из расплавленных солей. При этом образуется черновой магний, содержащий 5% примесей. После рафинирования путем переплавки в электропечи образуется чистый магний, содержащий 99,82— 99,92% магния. Устойчивость магния против коррозии невысокая, поэтому применение его в технике очень ограничено. В промышленности магний используется в виде сплавов с алюминием, марганцем, цинком и другими металлами. Магниевые сплавы хорошо обрабатываются резанием и имеют сравнительно высокую прочность (Ств = 200- 400 МПа)..В сплавы магния вводят церий, цирконий, которые измельчают зерно и повышают механические свойства, а также бериллий, торий и другие редкоземельные металлы. Различают литейные и деформируемые сплавы магния.  [c.103]

Различают по способу использования сплавы литейные и сплавы пластичные. В то время как все пластичные сплавы могут быть использованы как литейные сплавы, предназначенные для литья, не все могут служить материалом для образования из нил. изделий путем давления. Многие, и притом важнейшие, сплавы выявляют свои высокие качества при термической обработке. Путем закалки при температуре, бл "кой к температуре размягчения и следуюш.его за ней длительного отпуска при обычной или при повышенной температуре (естественное или искусственное созревание) можно значительно повысить механические свойства сплава. Такая термическая обработка называется .улучшением или облагораживанием металла. Совсем на других основаниях базируется способ уменьшения размеров кристаллов, применяемый у сплавов алюминия и кремния. Способ этот также оказывает действие на улучшение. механически. качеств, почему и носит то же название улучшения или облагораживания . В характеристике процессов путем определенных наименований еще не достигнуто надлежащего соглашения.  [c.1126]


Магний применяют главным образом в виде сплавов. Для улучшения механических и технологических свойств в магний добавляют алюминий и цинк добавка марганца увеличивает его коррозионную стойкость. В последние годы появились новые сплавы, содержащие цирконий и торий. Эти сплавы обладают повышенной жаропрочностью. В космической и ракетной технике стали находить применение сверхлегкие сплавы с добавками лития.  [c.371]

Чугун с шаровидным графитом обладает высокими значениями пределов прочности при растяжении, сжатии и изгибе, четко выраженным пределом текучести, заметным удлинением в литом состоянии и высоким удлинением после отжига, достаточно высокой ударной вязкостью после термической обработки и т. п. Он также обладает весьма удовлетворительными литейными свойствами (хорошей жидкотеку-честью, малой линейной усадкой, незначительной склонностью к образованию горячих трещин и т. п.), хорошо поддается механической обработке, может подвергаться сварке, заварке литейных дефектов, автогенной резке и т. п. Его эксплуатационные свойства также положительны — он обладает высокой износостойкостью, хорошими антифрикционными свойствами, высокой жаростойкостью (при легировании алюминием или кремнием).  [c.137]

Малая плотность, высокая механическая прочность, устойчивость против коррозии, хорошая обрабатываемость и ряд других свойств послужили причиной применения алюминиевых сплавов под давлением для получения ответственных деталей. Чистый алюминий, как правило, при литье под давлением не применяется, так как отливка его связана с рядом трудностей.  [c.53]

Алюминий и его сплавы получили широкое распространение в различных отраслях промышленности благодаря малому удельному весу, высоким механическим свойствам, высокой коррозионной стойкости и хорошей сваривае-Mo tH. В настоящее время алюминий и его сплавы широко применяются для изготовления разных сварных конструкций, изделий и сосудов. Кроме проката А1 применяется в виде литья поэтому дефекты литья обычно исправляют сваркой.,  [c.100]

Магний, подобно титану, имеет гексагональную кристаллическую решетку. Чистый магний и простые бинарные его сплавы плавятся при 650° С. Более сложные сплавы плавятся в широком интервале температур (460—650°С). Удельная теплоемкость магния и алюминия примерно одинаковая, а скрытая теплота плавления в два раза у него меньше. Теплопроводность магния ниже теплопроводности алюминия, но в два раза выше, чем теплопроводность малоуглеродистой стали. Маглий активнее, чем алюминий, реагирует с кислородом. Чистый, особенно литой, магний обладает малой прочностью и пластичностью, поэтому не применяется как конструкционный материал. Для этого применяют сплавы магния, которые подобно алюминиевым, также разделяют на деформируемые и литые сплавы. Механические свойства сплавов магния сильно зависят от направления волокон, что обусловлено особенностями гексагональной кристаллической решетки.  [c.115]

Из освоенных промьииленностью композиционных материалов ведущее место занимают металлические композиционные материалы на основе алюминия и его сплавов. Использование алюминия в качестве матричного материала обусловлено широким распространением его в технике, низкой плотностью, коррозионной стойкостью, возможностью регулировать механические свойства алюминиевых сплавов термической обработкой и подвергать их различным видам обработки давлением и литья.  [c.232]

Чистый алюминий ввиду его низких литейных свойств очень редко применяют для фасонного литья. На практике используют легкие сплавы на основе алюминия и магния (особенно силумины). Сплавы алюминия с кремнием марок АЛ2, АЛ4, АЛ9 с содержанием 6—13% 51 отличаются высокими литейными свойствами и, в частности, хорошей жидкотекучеетью. Из этих сплавов отливают тонкостенные изделия очень сложной конфигурации. Усадка силуминов составляет около 1 %. Температуру сплава при заливке в формы можно изменять в довольно широких пределах (660—750° С). Модифицированием расплавленного силумина металлическим натрием (0,06—0,10% массы сплава) при 780—800° С можно получить очень мелкозернистую структуру и более высокие механические свойства.  [c.283]


Некоторые сплавы алюминия (Д16А, В95, АК6) после термической обработки приобретают высокие прочностные свойства. Для изготовления сварных конструкций в судостроении такие сплавы не нашли широкого применения вследствие низких коррозионных свойств и ухудшения механических свойств сварного соединения по сравнению с основным металлом. Для сварки этих сплавов трудно подобрать присадочный металл, который в литом состоянии обладал бы механическими свойствами, близкими к свариваемому металлу. Кроме того, в процессе сварки, вследствие теплового воздействия, происходит отпуск свариваемого металла в околошовной зоне, что снижает его прочность.  [c.12]

При обычных методах литья кремний, введенный в алюминий в больших количествах (более 15%), сильно ликвирует и образует грубые первичные выделения, которые сильно охрупчивают сплав и снижают его механические и технологические свойства. Несмотря на применение разнообразных методов модифицирования с целью измельчения грубой кремниевой составляющей, до настоящего времени не удается приготовить обычным методом литья высококремнистые сплавы, удовлетворяющие по качеству и свойствам всем необходимым требованиям.  [c.296]

Подгруппа VA. Азот. Является вредной примесью. Его содержание в кристаллически анизотропных сплавах не должно превышать 0,002 7о- Азот сильно измельчает зерно в литом состоянии. Отрицательное влияние на механические и технологические свойства проявляется в том, что нитриды и карбонитриды алюминия, титана и ниобия сосредоточиваются по границам зерна, усиливают их охрупчивание и препятствуют росту.  [c.143]


Смотреть страницы где упоминается термин Алюминий и его литой — Механические свойства : [c.405]    [c.150]    [c.357]    [c.512]    [c.250]   
Чугун, сталь и твердые сплавы (1959) -- [ c.402 ]



ПОИСК



504—505 ( ЭЛЛ) литые

X оно литы

Алюминий Механические свойства

Алюминий — Свойства

Литий

Литий Механические свойства

Литий Свойства



© 2025 Mash-xxl.info Реклама на сайте