Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кориолисово взаимодействие в тетраэдрических молекулах

Комбинационные частоты 269, 271 Контур неразрешенных полос как индикатор типа полос 416,473, 514 Контурные линии, представление потенциальных поверхностей 220 Координаты симметрии в системе валентных сил 164 Координаты смещения,отношение к нормальным координатам 81. 83, 86, 87, 95, 160, 183 Кориолисово взаимодействие в асимметричных волчках 495 в линейных молекулах 400 в симметричных волчках 429. 435, 463 в тетраэдрических молекулах 475, 480 доля во вращательной постоянной а 401 как причина появления запрещенных колебательных переходов 486 как причина снятия вырождения 433.435 как причина удвоения / 404 правила отбора 404, 443, 475, 479, 486, 495 Кориолисово расщепление влияние на структуру полосы 457, 469, 472,481, 486  [c.603]


XY4, молекулы, плоские 14, 19, 203 XY4, молекулы, пирамидальные, нормальные колебания 128 XY4, молекулы, тетраэдрические (см. также Та и Сферические волчки) выражение для частот нормальных колебаний и силовые постоянные в системе валентных сил 198 в системе центральных сил 183 в более общей системе сил 206 изотопический эффект 250, 254, 331 отношение к нормальным колебаниям при несимметричном замещении 257, 333 кориолисово взаимодействие 475 потенциальная энергия 183, 198, 206 правила отбора для основных частот 281  [c.615]

Для сферического волчка все три момента инерции одинаковы и, следовательно, в первом приближении формула для вращательной энергии очень простая. Она совершенно такая же, как и для линейных молекул [см. выражение (1,131)]. Естественно, что в этом приближении мы должны получить очень простую структуру полос. В действительности же структура полос сильно усложняется из-за кориолисовых взаимодействий. Ниже будет рассмотрен только электронный переход Р2 — Ах в молекулах точечной группы Т а (т. е. в тетраэдрических молекулах). Это единственный тип перехода, разрешенный при поглощении излучения молекулами, находящимися в полносимметричном Ах) основном состоянии (табл. 9).  [c.243]

Весьма вероятно, что после того, как будут выполнены более подробные исследования спектров других молекул, будет найдено много новых запрещенных колебательных переходов, относящихся не только к тетраэдрическим молекулам, но и к молекулам иных типов. Их действительное появление в спектрах SiHj и GeHi заставляет нас при интерпретации слабых инфракрасных и комбинационных частот считаться с реальной возможностью нарушения колебательных правил отбора даже в газовой фазе (см. случай молекулы jHi стр. 352). Таким образом, появление в инфракрасном спектре и спектре рассеяния некоторых частот, которые для данной структуры (точечной группы) молекулы запрещены правилами отбора, не обязательно исключает эту структуру. Ее следует считать исключенной лишь в том случае, когда можно показать, что соответствующие полосы не могут возникнуть за счет кориолисова взаимодействия. К счастью, из иравила Яна (см. стр. 404) следует, что далеко не все запрещенные переходы могут стать активными за счет кориолисова взаимодействия. Так, например, альтернативный запрет для молекул с центром симметрии (см. стр. 277) точно выполняется. даже при учете этого взаимодействия.  [c.487]


Переходы Е — А,. Если верхнее состояние комбинационной полосы тетраэдрической молекулы является дважды вырожденным, то могут появляться все пять ветвей, определенные условиями (4,88). В подобном случае можно ожидать, что структура полосы будет очень схожа со структурой полносимметричной комбинационной полосы симметричного волчка. Различие должно проявляться лишь в распределении интенсив-иостей линий, которое будет менее закономерным. До сих пор ни одна из таких полос не была наблюдена экспериментально. Так как ири колебании (е) не имеется колебательного момента количества движения, то расстояние между последовательными линиями Р, R и О, S ветвей должно равняться 2В и 46 соответственно. Вращательные линии в спектрах Hj, S1H4 и GeHj при более высоких значениях J должны расщепляться вследствие кориолисова взаимодействия с близким по частоте колебанием V4(/s).  [c.487]

Кориолисово расщепление вращательных уровней. Мы видели выше, что каждый вращательный уровень с заданным значением J состоит из ряда подуровней (всего из I подуровней). В том приближении, в котором справедливы формулы (4,77) и (4,78), эти подуровни совпадают друг с другом. Однако если принять во внимание более тонкие взаимодействия вращения и колебания, то происходит расщепление по причинам, аналогичным причинам, вызывающим /-удвоение уровней в линейных молекулах (см. стр. 406). Однако расщепление может произойти лишь на такое число уровней, со слегка отличной друг от друга энергией, которое равно числу различных яиний на фиг. 138. Дважды вырожденные вращательные подуровни типа Е и трижды вырожденные вращательные подуровни типа F не расщепляются на две или соответственно три компоненты, так как все рассматриваемые более тонкие взаимодействия имеют тетраэдрическую симметрию. Этот тип вырождения мог бы быть снят только внешним полем.  [c.480]


Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.475 , c.480 ]



ПОИСК



XY4, молекулы, тетраэдрические (см. также Тл и Сферические волчки) кориолисово взаимодействие

Кориолисово взаимодействие

Х1( молекулы тетраэдрические



© 2025 Mash-xxl.info Реклама на сайте