Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жаропрочность сплава

Фазы Лавеса встречаются как упрочняющие интерметаллидные фазы в жаропрочных сплавах.  [c.108]

Удаление из металла серы, фосфора и кислорода достигается в наибольшей степени при плавке в электропечах (дуговых или индукционных). Будучи более дорогой, электросталь является и более качественной поэтому этим способом изготавливают преимущественно легированные и высоколегированные стали, жаропрочные сплавы, инструментальные стали и т. д.  [c.192]


Жаропрочность сплавов каждой группы можно варьировать в известных пределах, что характеризуется полосами разброса, определяемыми легированием сплава и его структурным состоянием (рис. 340).  [c.456]

В соответствии с этим очевидно, что чем выше температура плавления сплава (которая в первую очередь определяет силы межатомных связей), тем больше должна быть жаропрочность сплава.  [c.460]

Отсюда следует, что в качестве жаропрочных сплавов следует применять твердые растворы, в первую очередь с элементами, которые повышают температуру рекристаллизации.  [c.460]

Поэтому очистка сплава (соответствующими металлургическими приемами, а также использованием чистой шихты) от вредных примесей, образующих легкоплавкие фазы и эвтектики, — важное средство повышения жаропрочности сплава. Такими вредными примесями являются примеси легкоплавких металлов, например олово, свинец, сурьма, а также сера и примеси других элементов, образующих легкоплавкие эвтектики или соединения, которые располагаются по границам зерен и резко снижают жаропрочность. Некоторые элементы устраняют влияние вредных примесей, вступая с ними в химическое соединение и образуя более тугоплавкие соединения. Таково, например, действие церия в никелевых сплавах.  [c.463]

НИКЕЛЕВЫЕ И КОБАЛЬТОВЫЕ ЖАРОПРОЧНЫЕ СПЛАВЫ  [c.473]

Практически как высокожаропрочные сплавы применяют стареющие никелевые сплавы — нимоники. Появление их было вызвано развитием реактивной авиации, требовавшей жаропрочные сплавы для лопаток. Известные до того времени жаропрочные сплавы, в основном аустенитные стали, не удовлетворяли новым, возросшим требованиям в отношении жаропрочности.  [c.473]

Высокая жаропрочность сплавов нимоник обеспечивается их высокой прочностью и малой скоростью разупрочнения. В данном случае у состаренного нимоника высокая прочность связана с образованием большого количества (до 20%, а в некоторых современных высокожаропрочных сплавах до 40% второй фазы), когерентно связанной с маточным твердым раствором. Эта когерентная связь в свою очередь вызвала дробление блоков 7-твердого раствора до размера в 1500—2000 А. Малая же скорость разупрочнения связана с малой диффузионной подвижностью атомов алюминия и титана при высоких температурах вследствие высоких значений сил межатомных связей в решетках у- и у -фаз.  [c.476]

Состав дисперсионно твердеющих никелевых жаропрочных сплавов (нимоник), о/о (ГОСТ 5632—72)  [c.476]

Основные жаропрочные свойства некоторых никелевых жаропрочных сплавов приведены также в табл. 78 и рис. 354.  [c.477]


Жаропрочные свойства некоторых никелевых жаропрочных сплавов  [c.477]

Развитие жаропрочных сплавов  [c.478]

Поскольку жаропрочность различных сплавов в определенной области температур может быть почти одинаковой, при выборе того или другого сплава для работы при высоких температурах часто руководствуются другими характеристиками. Наиболее хрупким, трудным в технологическом отношении является вольфрам, поэтому сплавы на его основе применяют обычно при рабочих температурах, превышающих 2000°С в условиях сильного эрозионного износа. Сплавы на основе тантала являются наиболее дорогими и поэтому в интервале температур 1000—1500°С используют преимущественно сплавы на основе ниобия и молибдена. Наиболее жаропрочны сплавы молибдена. Их применяют при температурах выше 1200°С и иногда до 2000 С. Выбор молибденового или ниобиевого сплава определяется требованиями пластичности, свариваемости, коррозионной стойкости и т. д.  [c.530]

Чем сложнее состав сплава и состав выделяющихся фаз, тем медленнее происходит разупрочнение сплава при высоких температурах. Поэтому жаропрочные сплавы обычно имеют сложный химический состав и содержат специально вводимые присадки железа и никеля в отличие от остальных алюминиевых сплавов.  [c.594]

Механические свойства алюминиевых жаропрочных сплавов при повышенных температурах  [c.596]

По сравнению с жаропрочными сплавами для этих материалов характерно значительно меньшее разупрочнение с увеличением продолжительности и температуры испытания в интервале 1000—1300°С.  [c.637]

К деформируемым алюминиевым сплавам, упрочняемым термической обработкой, относятся сплавы системы А1—Си—Mg с добавками некоторых элементов (дуралюмины, ковочные сплавы), а также высокопрочные и жаропрочные сплавы сложного химического состава. Дуралюмины (Д16—Д18) содержат 3,8—4,8 % Си, 0,4— 1,8 % Mg, а также 0,4—0,9 % Мп, который повышает коррозионную стойкость сплавов. После термической обработки (закалка и естественное старение) эти сплавы имеют высокую прочность и удлинение. Ковочные сплавы (АК6—АК8) содержат 1,8—4,8 % Си,  [c.17]

Изделия из алюминия и его сплавов паяют с припоями на алюминиевой основе с кремнием, медью, оловом и другими металлами. Магний и его сплавы паяют припоями на основе магния с добавками алюминия, меди, марганца и цинка. Изделия из коррозионно-стойких сталей и жаропрочных сплавов, работающих при высоких температурах (выше 500 °С), паяют тугоплавкими припоями на основе железа, марганца, никеля, кобальта, титана, циркония, гафния, ниобия и палладия.  [c.240]

Электроимпульсную обработку целесообразно применять при предварительной обработке штампов, турбинных лопаток, фасонных отверстий в деталях из жаропрочных сплавов. Точность размеров и шероховатость обработанных поверхностей зависят от режима обработки. При электроимпульсной обработке съем металла в единицу времени в 8—10 раз больше, чем при электроискровой обработке.  [c.404]

Рабочие температуры жаропрочных сплавов составляют примерно  [c.286]

Жаропрочные сплавы для работы при высоких температурах (до 700—950 °С) создают на основе железа, никеля и кобальта, а для работы при очень высоких температурах (до 1200—1500 С) — на 0 H(iBe молибдена и других тугоплавких меч аллов.  [c.287]

В настоящее время созданы жаропрочные сплавы, содержащие Сг, Мо,  [c.293]

Специальные свойства никеля жаропрочность, высокая корро-зпоитгая стойкость, высокое электросопротивление — обусловили достаточно широкое применение технического никеля марок от П-О до П-4, в котором количество примесей ие прев].ппает 2,4% (а — 30- -77 кгс/мм ) б == 2- 50% в зависимости от термообработки и степени деформации), к)иeль- eгалла (53—( iO% Ni 27 — 29% Си 2—3% Fe 1,2—4,8% Ми), а также группы жаропрочных сплавов.  [c.360]

Рассматривая в историческом аспекте развитие жаропрочных сплавол, можно прийти к заключению, что для каждой лруппы сплавов уже достигнут предел и, тем не менее, все-же есть пути совершеиствования жаропрочных сплавов.  [c.457]

Появились принципиально новые идеи создания изделий из жаропрочных сплавов (из ] омпозиционных материалов, монокристальных материалов и др.).  [c.457]


Если основа жаропрочного сплава имеет несколько аллотропических модификаций, то существенное значение приобретает получение основы модификации с более высокой температурой рекристаллизации. Известно, что сплав с гранецентри-рованной кубической решеткой (К12) обладает более высокой температурой рекристаллизации, чем сплав, близкий по составу с объемноцентрированной кубической решеткой (К8), т. е. аустенитная структура обладает большей жаропрочностью, чем ферритная. По-видимому, это связано с большой плотностью гранецентрированной решетки. В соответствии с этим сплавы на основе Tia (решетка Г12) являются более жаропрочными, чем сплавы на основе Tip (решетка К8).  [c.463]

Кроме высоких коррозионных свойств, снлавы хастеллой обладают и высокими механическими свойствами (аа>90 кгс/мм ,. СТо,2>40 кгс/мм ) при высокой пластичности, что делает их ценным конструкционным материалом. Ешс более высокие механические свойства (Ствг 120 кгс/мм ) можно получить термической обработкой, аналогично той, которую применяют для ппкелсвых жаропрочных сплавов закалка+старение при 800°С, Однако ма -симал1,ное упрочнение соответствует минимуму коррозионной стойкости, поэтому упрочняющая термическая обработка рекомендуется не вссгда.  [c.498]

Состав деформируемых алюминиевых жаропрочных сплавов, применяемых в отечественном авиамоторосгроении, приведен в табл. 128.  [c.594]

H i гидравлических пресс ),х осуществляют изотермическую штамповку. При этом способе горячее деформирование происходит в изотермических условиях, когда штампы и окружающее их ограниченное простраливо иагревяются до температуры деформации сплава. Чтобы обеспечить наиболее полное протекание раз-упрочняющих процессов во время деформации, штампу/от при низких скоростях деформировпния. Температура нагрева рабочей зоны установки и штампов, изготовляемых из жаропрочного сплава, может достигать 900 С. Для нагрева используют индукторы, встроенные в установку.  [c.91]

Схема всестороннего сжатия металла при прессовании приводит к значительным удельным усилиям, действующим на инструмент. Поэтому инструмент для прессования работает в исключительно тяжелых условиях, испытывая кроме действия больших давлений действие высоких температур. Износ инструмента особенно велик при прессовании сталей и других труднодеформируемых сплавов из-за высоких сопротивления деформированию и температуры горячей обработки. Инструмент для пресования изготовляют из высококачественных инструментальных сталей и жаропрочных сплавов. Износ инструмента уменьплают применением смазочных материалов, например, при прессовании труднодеформируемых сталей и сплавов используют жидкое стекло со специальными свойствами. Основным оборудованием для прессования являются вертикальные или горизонтальные гидравлические прессы.  [c.116]

Плазменной струей, полученной в столбе дугового разряда независимой дуги, разрезают нез)лектропроводные материалы (напри мер, керамику), тонкие стальные листы, алюминиевые и медные сплавы, жаропрочные сплавы и т. д. При плазменной резке используют аргон, его смесь с водородом, воздух и другие газы. Скорость резки плазменной дугой при прочих равных условиях выше скорости резки плазменной струей. Плазменную резку выполняют специальным резаком, называемым плазмотроном.  [c.210]

Целесообразно производить двойную заточку сверл из инсгру-ментальной стали. У твердосплавных сверл с двойной заточкой при обработке заготовок из чугуна наблюдается снижение стойкости. При обработке жаропрочных сплавов двойная заточка сверл также нецелесообразна.  [c.140]

Наряду с максимально возможными значениями предела дли-те 1ьпой прочности и т ползучести, современные жаропрочные сплавы должны обладать высоким соиротивлением хрупкому и усталостному разрушению, хорошей жаростойкостью.  [c.286]

Жаропрочные сплавы. Эти сила[1ы используют для деталей, рабо тающих при гемпературах до 300 С (поршни, головки цилиндров, крыльчатки, лопатки и диски осевых компрессоров турбореактивных двигателей, обшивка сверхзвуковых самолетов и т. д.). Жаропрочмь е сплавы имеют более сложный химический состав, чем рассмотреипыс, выше алюминиевые сплавы. Их дополнительно легируют железом, никелем п титаном.  [c.331]


Смотреть страницы где упоминается термин Жаропрочность сплава : [c.456]    [c.463]    [c.464]    [c.478]    [c.479]    [c.479]    [c.479]    [c.522]    [c.595]    [c.595]    [c.291]    [c.293]    [c.294]    [c.331]    [c.479]   
Технология металлов и конструкционные материалы Издание 2 (1989) -- [ c.25 ]



ПОИСК



Жаропрочность

Жаропрочные КЭП

Сплавы жаропрочные



© 2025 Mash-xxl.info Реклама на сайте