Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стабилизация (сталей аустенитного класса)

Среды охлаждающие 69 Стабилизация (сталей аустенитного класса) 15  [c.297]

Сварные соединения сталей аустенитного класса стабилизация при 780—820 °С или аустени-тизация при 1000—1100°С (нагрев в интервале 500—900 °С со скоростью менее 100 °С/ч) для снятия напряжений, выравнивания структуры и свойств. Сварные соединения стали мартен-ситного или ферритного класса — отпуск при 700—800 °С  [c.26]

Примечание 6. Нержавеющие стали аустенитного класса после нагрева в пределах 350—850° подвержены межкристаллитной коррозии. Добавка ниобия или титана (стабилизация) предохраняет сталь от этого вида коррозии. В стабилизированных сталях содержание углерода не должно превышать 0,1%.  [c.797]


Все отливки из сталей перлитного класса (углеродистой и низколегированных) подвергаются термической обработке — нормализации с высоким отпуском или полному отжигу. Отливки из аустенитной стали подвергаются закалке на аустенит с последующей стабилизацией.  [c.278]

Второй вид составляют операции высокотемпературной термической обработки сварных узлов закалка или нормализация при нагреве до температур 900—1000° С е последующим отпуском для конструкций из сталей перлитного, бейнитного и мартенситного классов и аустенитизация при температурах 1050—1200° С без последующей стабилизации или с ее введением для изделий из аустенитных сталей. Основной их целью при изготовлении сварных конструкций является перекристаллизация созданных сваркой участков с резко ухудшенными свойствами, восстановление которых отпуском невозможно. Такими участками могут быть участки крупного зерна в шве и околошовной зоны сварных соединений, выполненных, например, электрошлаковой сваркой, а также мягкие прослойки в зоне термического влияния при сварке термически упрочняемых сталей. При высокотемпературной термической обработке может также проходить залечивание зародышевых дефектов на границах зерен, созданных в процессе сварки и способствующих проявлению склонности сварных соединений к локальным разрушениям при высоких температурах. Так как с повышением легированности сталей вероятность ухудшения границ зерен при сварке повышается, то и необходимость высокотемпературной обработки для них возрастает. Однако в связи с тем, что проведение ее значительно сложнее операций отпуска, а для крупногабаритных изделий зачастую и невозможно, то к ней обращаются лишь в ограниченном числе случаев, когда отпуск или стабилизация не дают желаемых результатов.  [c.82]

Склонность стали феррито-аустеиитного класса к МКК по сравнению с аустенитной сталью при одинаковом содержании углерода (0,08%) в них как при отсутствии стабилизации, так и при стабилизации титаном иллюстрируется на рис. 30.  [c.48]

Улучшить свойства целого ряда конструкций из высоко легированных сталей после сварки можно специаль ными видами термической обработки. Так, например, для повы шения пластичности и выравнивания свойств в сварных соедине ВИЯХ трубопроводов из жаропрочных хромоникелевых сталей ау стенитного класса применяется аустенизация. В других случаях, например при изготовлении сварных роторов из подобных сталей, применяется тепловое старение при температурах 750 -800° С. В целях получения высокой стойкости против межкристаллитной коррозии сварные конструкции из нержавеющих хромоникелевых аустенитных сталей подвергают стабилизации, которая придает сварным соединениям вторичную стойкость против межкристаллитной коррозии ( см. рис. VII. 13).  [c.379]


Сварные соединения стали аустенитного класса стабилизация при 780-820°С или аустенизация при 1000-П00°С для снятия напряжений, вьфавнивания структуры  [c.20]

Сварные соединения сталей аустенитного класса стабилизация при 780—820° и.ш аустенизация 10U0—110и° (нагрев в ншернале 500—900° со скоростью не менее 100°/ч) для снятия напряжений, выравнивания структуры и свойств. Сварные соединения мартенсит кого или феррит-ного-класса — отпуск при 700—800°  [c.6]

Наиболее радикальным средством борьбы с межкристаллитной коррозией аустенитных сталей является легирование их титаном или ниобием в количествах, обеспечивающих полное связывание всего имеющегося в стали углерода в стабильные карбиды титана и ниобия. Карбиды типа Т1С и КЬС не растворяются в аустените хромоникелевых сталей при всех практически возможных температурах термической обработки (аустенитизации). Поэтому в аустенитных сталях, легированных титаном и ниобием, отсутствуют пересыщенные углеродом твердые растворы, а следовательно, и условия для неблагоприятных структурных изменений по границам зерен, создающих чувствптельность к межкристаллитной коррозии. Эффективная стабилизация хромоникелевых сталей аустенитного класса достигается прп наличии определенных соотношений между титаном (нпобиелт) п имеющимся в стали углеродом. Для надежной стабилизации необходимо, чтобы со-держанпе титана было в 5—6 раз, а содержание ниобия в 10—  [c.334]

По типу равновесной структуры стали подразделяются на доэвтекто-идные, эвтектоидные, заэвтектоидные и ледебуритные. Эвтектоидные стали имеют перлитную структуру, а доэвтектоидные и заэвтектоидные наряду с перлитом содержат соответственно избыточный феррит или вторичные карбиды типа МзС. В структуре литых ледебуритных (карбидных) сталей присутствует эвтектика (ледебурит), образованная первичными карбидами вкупе с аустенитом поэтому по структуре они могут быть отнесены к белым чугу-нам, но их причисляют к сталям с учетом меньшего, чем у чугунов, содержания углерода (< 2%) и возможности подвергать пластической деформации. Влияние легирующих элементов на положение точек 8иЕ диаграммы Ре—С (см. рис. 4.1) проявляется чаще всего в их смещении в направлении меньшего содержания углерода. В сталях с высоким содержанием элементов, сужающих у-область, при определенной концентрации исчезает уоа-превращение (рис. 7.5, б). Такие стали относят к ферритному классу. При высокой концентрации в стали элементов, расширяющих у-область, происходит стабилизация аустенита с сохранением его при охлаждении до комнатной температуры. Эти стали причисляют к аустенитному классу. Таким образом, с учетом фазового равновесия легированные стали относят к перлитному, карбидному, ферритному или аустенитному классам.  [c.154]

Для сварных соединений жаропрочных аустенитных сталей с малым запасом аустенитности, например для сталей типа 18-12, имеющих двухфазные аустепитно-ферритные швы и предназначенных для длительной работы, аустенитизации, как правило, не требуется. Здесь во многих случаях можно обойтись стабилизацией, т. е. кратковременным старением. Если речь идет о сварных соединениях сталей указанного класса и небольшой толщины с малокалиберными швами, то здесь почти всегда можно не прибегать и к стабилизации, т. е. обходиться без термической обработки.  [c.274]

Разработанная авторами работы [8] немагнитная сталь этого класса 9Г28Ю9МВБ в закаленном состоянии является аустенитной, ферритообразующее действие алюминия компенсируется аустенитообразующим влиянием марганца и углерода. Для стабилизации структуры и свойств при повышенных температурах сталь дополнительно легирована молибденом, вольфрамом, ниобием (до 0,5—1% каждого). Сталь хорошо деформируется в горячем и холодном состоянии, обладает хорошей свариваемостью.  [c.293]

При температуре старения, большей оптимальных значений, снижается прочность вследствие коалесценции частиц вторых фаз и развития, начиная с 500 °С обратного мартенситного преврашения а - у, сопровождающегося образованием и стабилизацией "нового" аустенита. Новый аустенит имеет невысокую прочность, так как он не упрочняется старением и при охлаждении до 20 ° С не превращается в мартенсит в значительных количествах. При вьщелении карбидов по границам зерен при медленном охлаждении при 650-700 °С пластичность и ударная вязкость становятся ниже, чем в закаленном состоянии. Недостатком сталей переходного класса является низкое сопротивление коррозионному растрескиванию. После обработки до достижения максимальной прочности эти стали по стойкости и коррозионному растрескиванию уступают даже аустенитным сталям типа 12Х18Н10Т.  [c.244]


Необходимо также отметить существование четвертого класса— дисперсионно-твердеющих нержавеющих сталей, которые приобретают высокую прочность и твердость в результате низкотемпературной термообработки, проводимой после закалки с вы--сокой температуры. Эти сплавы Сг—Fe содержат меньше никеля, чем это требуется для стабилизации аустенитной фазы (или вообще его не содержат). Зато они содержат такие легирующие элементы, как алюминий или медь, которые обеспечивают высокую твердость, приводя к образованию и выделению интерметаллических соединений вдоль плоскостей скольжения или границ зерен. Эти стали применяют в тех же случаях, что и коррозионностойкие никеле-  [c.297]

По воздействию на свойства материала конструкции операции термической обработки могут быть разбиты па два вида. К первому из них относятся операции, отпуска при температурах 550— 750 С узлов из сталей перлитного, бейнитного и мартенситного классов-и стабилизации при температурах 750—900° С узлов из аустенитных сталей. Основным их назначением применительно к сварным конструкциям является снятие сварочных напряжений, устранение подкалки шва и зоны термического влияния, а также эффекта деформационного старения для сталей первой группы и снятия сварочных напряжений и етабилпза7ши структуры для второй. Явлений перекристаллизации, а также залечивания возникших при сварке зародышевых дефектов в условиях отпуска или стабилизации не происходит.  [c.82]

Высоколегированные стали и сплавы более склонны к образованию трещин, чем низкоуглеродистые. Горячие трещины появляются большей частью в аустенитных сталях, холодные — в закаливающихся сталях мартенситного и мартенситно-ферритного классов. Кроме этого, коррозионностойкие стали, не содержащие титана или ниобия или легированные ванадием, при нагревании выше 500°С теряют антикоррозионные свойства по причине выпадения из твердого раствора карбидов хрома и железа, которые становятся центрами коррозии и коррозионного растрескивания. Термической обработкой (чаще всего закалкой) можно восстановить антикоррозионные свойства сварных изделий. Нагревом до 850°С ранее выпавшие из раствора карбиды хрома вновь растворяются в аустените, а при быстром охлаждении они не выделяются в отдельную фазу. Такой вид термообработки называют стабилизацией. Однако стабилизация приводит к снижению пластичности и вязкости стали. Получение высокой пластичности, вязкости и одновременно антикоррозийности сварных соединений возможно нагревом металла до температуры НХХ П5() С и бысфым охлаждением в воле а-ка 1ка)  [c.121]


Смотреть страницы где упоминается термин Стабилизация (сталей аустенитного класса) : [c.8]    [c.243]   
Термическая обработка металлов (1957) -- [ c.151 ]



ПОИСК



Стабилизация

Стабилизация (сталей аустенитного

Сталь аустенитная



© 2025 Mash-xxl.info Реклама на сайте