Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дивергенция вектора перемещения напряжений

Исходя из соотношения (12.16), можно получить другие общие решения уравнений теории упругости. Если, в частности, принять в них Ф = 0, то вектор Ь, как следует из (12.14) и (9.4), только множителем будет отличаться от вектора перемещения и. Таким образом, имея вектор перемещения и, удовлетворяющий уравнениям теории упругости в перемещениях при отсутствии объёмных сил, можем рассматривать этот вектор как дивергенцию некоторого тензора функций напряжений, являющегося девиатором симметричного тензора  [c.62]


В линейной теории упругости, напомним, распространен вариант полуобратного метода, в котором исходным этапом служит задание статически возможного, иначе говоря, удовлетворяющего уравнениям статики в объеме и на поверхности, напряженного состояния. Далее проверяется, что это состояние согласуется с уравнениями Бельтрами — Мичелла этим гарантируется, что линейный тензор деформации, вычисляемый по принятому тензору напряжений, допускает определение вектора перемещения и. Перенесение этого приема в нелинейную теорию затруднено тем, что обращение уравнения состояния — разыскание меры деформации по тензору напряжений из нелинейного уравнения состояния практически неосуществимо (И, 8) и неоднозначно. Аналог уравнений Бельтрами —Мичелла в нелинейной теории может быть использован лишь в исключительных случаях ( 17). Поэтому вторым вариантом полуобратного метода здесь может служить исходное задание меры деформации, удовлетворяющее условиям обращения в нуль тензора Риччи (П1.10.21). По этой мере и по уравнению состояния составляется тензор напряжений. Он должен быть статически возможным его дивергенция должна быть нулем, если не учитываются массовые силы, а по его произведению на вектор нормали определяются поверхностные силы. Конечно, нет оснований ожидать, что такая процедура не потребует при выполнении уравнений статики в объеме конкретизации задания коэффициентов определяющего уравнения, как функций инвариантов меры деформаций (скажем, коэффициентов фг(/1, 2, /з) в (4.3.4)). Значит и формы представления поверхностных сил зависят от выражений этих коэффициентов, иначе говоря, их нельзя представить в единой записи, независящей от того, какой принят закон зависимости удельной потенциальной энергии э(/,, /2, /3) от ее аргументов.  [c.135]

Полученные Ю. А. Крутковым (1949) формулы (1.6.10), (1.6.13) представляют одну из форм общего решения задачи линейной теории упругости ими определяются по тензору функций напряжений, удовлетворяющему дифференциальному уравнению (1.6.9), тензор напряжения Т и вектор перемещения и. Они оказались зависящими лишь от первого инварианта Ф и дивергенции 6 тензора Ф. Поэтому нет нужды в знании всех компонент этого тензора, а достаточно лишь связать 6 и Ф соотношением, являющимся следствием (1.6.9).  [c.135]



Смотреть страницы где упоминается термин Дивергенция вектора перемещения напряжений : [c.64]   
Пространственные задачи теории упругости (1955) -- [ c.36 ]



ПОИСК



Вектор напряжения

Вектор перемещения

Дивергенция

Дивергенция вектора

Дивергенция вектора перемещения

Перемещения и напряжения



© 2025 Mash-xxl.info Реклама на сайте