Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условие несжимаемости Сен-Венана

Что касается скоростей в двух других направлениях, их величины могут быть произвольными, они связаны только условием несжимаемости со скоростью ез. Следует напомнить, что совершенно аналогичное положение было в теории идеальной пластичности при условии пластичности Треска — Сен-Венана. Условие равенства двух главных напряжений слишком частно, за него приходится расплачиваться допущением известной кинематической свободы.  [c.633]


Вопрос о связи между скоростями деформации и напряжениями при условии текучести Треска — Сен-Венана обсуждался в 14,4. Для плоского напряженного состояния о = а — 0 сечение правильной шестигранной призмы, изображающей в пространстве напряжений Oj, 0.2, 03 условие текучести Треска — Сен-Венана, плоскостью Од = 0 представляет собой рассмотренный выше шестиугольник. Нормаль к призме не содержится в плоскости чертежа, однако проекция нормали перпендикулярна к сторонам шестиугольника (фиг. 138). Следовательно, отношение главных скоростей деформации 2 равно отношению направляющих косинусов нормали к шестиугольнику в рассматриваемой точке. Условие несжимаемости  [c.213]

Таким образом, для плоской деформации несжимаемого материала условие пластичности совпадает с условием Сен-Венана.  [c.78]

Примем реологическую модель жестко-пластической среды Мизеса (г, = т, = onst, рис. 68), условие несжимаемости I = = 1 3 = О, энергетическое условие пластичности Т = т, = г, уравнения состояния Сен-Венана—Леви—Мизеса (Х.25) по теории пластического течения. Заменим в (Х.25) согласно (111.44) gj, = = Н//3 согласно (IV.34) а = т/ЗТ = Зт, согласно (1.92)  [c.295]

Широко известно, что одним из первых математиков, принимавших участие в становлении МКЭ, был Курант. Он представил приближенный метод решения задачи кручения Сен-Венана с помощью принципа минимума дополнительной энергии, используя линейную аппроксимацию функции напряжений внутри каждого из совокупности треугольных элементов [1]. С другой стороны, наиболее важными и исторически первыми среди пионерских работ по МКЭ в задачах расчета конструкций считаются статьи Тёрнера, Клафа, Мартина и Топпа [2] и Аргириса и Келси [3]. После появления этих статей вариационный метод стал интенсивно использоваться в математических формулировках МКЭ. И обратно, быстрое развитие МКЭ сообщило мощный стимул к разработке вариационных методов за последнее десятилетие появились новые вариационные принципы, такие, как вариационные принципы со смягченными условиями непрерывности [4—8], принцип Геррмана для несжимаемых или почти несжимаемых материалов [9, 10] и для задач изгиба пластин [11, 12] и т. д. Цель части В состоит в том, чтобы дать краткий обзор достижений в области вариационных принципов, которые служат основой МКЭ в теории упругости и теории пластичности. С практическим использованием этих принципов при формулировке МКЭ читатель может ознакомиться по работам [5—7].  [c.340]


Представляют интерес и, принципиально говоря, вероятно, могут быть решены с помощью таких теорий задачи, которые решаются только в напряжениях 1 ]. Укажем два типа задач. Первый характерен тем, что здесь всё тело или часть тела, примыкающая к гра- нице, предполагается перешедшей в пластическое состояние, и напряжения в этой части определяются только теми силами, которые действуют на соответствующей части внешней границы. В таком случае ясно, что все теории пластичности для несжимаемого материала при плоской деформации должны совпадать со статической теорией Сен-Венана (или очень мало от неё отличаться), поскольку одно только условие пластичности Мизеса делает задачу, статически определимой и потому характер связи между напряжениями, и деформациями не играет роли. Такого рода вопросы можно назвать задачами о несущей способности тела. Они состоят в том, что по заданному характеру распределения внешних сил, пропорциональных одному параметру, нужно найти их значение, т. е. величину aforo параметра, при котором возможно состояние пластического равновесия.  [c.84]


Смотреть страницы где упоминается термин Условие несжимаемости Сен-Венана : [c.84]    [c.84]    [c.21]    [c.201]   
Курс теории упругости Изд2 (1947) -- [ c.416 ]

Пластичность Ч.1 (1948) -- [ c.54 ]



ПОИСК



Сен-.Вена

Сен-Венан

Сен-Венана условие

Условие несжимаемости Кулона — Сен-Венана



© 2025 Mash-xxl.info Реклама на сайте