Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент полезного действия тепловых машин

Выражение для максимального значения КПД тепловой машины показывает, что для повышения коэффициента полезного действия тепловых машин  [c.104]

Термодинамика возникла из потребностей теплотехники . Развитие производительных сил стимулировало ее создание. Широкое применение в начале XIX в. паровой машины поставило перед наукой задачу теоретического изучения работы тепловых машин с целью повышения их коэффициента полезного действия. Это исследование было проведено в 1824 г. французским физиком, инженером Сади Карно, доказавшим теоремы, определяющие наибольший коэффициент полезного действия тепловых машин. Эти теоремы позволили впоследствии сформулировать один из основных законов термодинамики — второе начало. В 40-х годах XIX в. в результате исследований Майера и Джоуля был установлен механический эквивалент теплоты и на этой основе открыт закон сохранения и превращения энергии, называемый в термодинамике ее первым началом. Энгельс назвал его великим основным законом движения , устанавливающим основные положения материализма. Закон сохранения и превращения энергии имеет как количественную, так и качественную стороны. Количественная сторона закона сохранения и превращения энергии состоит в утверждении, что энергия системы является однозначной функцией ее состояния и при любых процессах в изолированной системе сохраняется, превращаясь лишь в строго определенном количественном соотношении эквивалентности из  [c.10]


Теория циклов. Исторически второй закон термодинамики возник как рабочая гипотеза тепловой машины, устанавливающая условия превращения теплоты в работу с точки зрения максимума этого превращения, т. е. получения максимального значения коэффициента полезного действия тепловой машины. Анализ второго закона термодинамики показывает, что малая величина этого коэффициента является следствием не технического несовершенства тепловых машин, а особенностью теплоты, которая ставит определенные ограничения в отношении величины его. Теоретически тепловые машины работают по круговым термодинамическим процессам, или циклам. Поэтому для того, чтобы шире раскрыть содержание второго закона термодинамики и провести детальный анализ его, необходимо исследовать эти круговые процессы.  [c.59]

Коэффициент полезного действия тепловой машины показывает, какую долю получаемой теплоты она превращает в работу.На примере цикла Карно мы видим, что работа совершается не за счет всей теплоты Qj, взятой от теплоотдатчика, а только за счет части ее Qj—Q , теплота же Qj отдается теплоприемнику. Таким образом в результате цикла Карно совершается работа, источник теряет теплоту, но вместе с тем теплоприемник получает тепло Qj- Если бы теплоприемник не получил тепло, то цикл Карно противоречил бы второму закону термодинамики.  [c.59]

Таким образом, круговой процесс, пробегаемый изображающей точкой в направлении часовой стрелки, представляет собой схему работы любой тепловой машины, трансформирующей тепло в работу (рис. 9). Газ получает от нагревателя количество тепла Q, часть этого тепла Q2 (Q2 < 0) отдает холодильнику, а разность Q = Ql — Q2 I превращает в работу. Из формулы (9.1) вытекает, что если Q = 0, то и А = 0. Следовательно, нельзя построить тепловую машину, которая давала бы выигрыш в работе без притока энергии извне (вечный двигатель первого рода). Очевидно, коэффициент полезного действия тепловой машины целесообразно определить как отношение работы А к полученному от нагревателя количеству тепла Ql  [c.33]

Клаузиуса постулат 32, 35 Клапейрона уравнение 59, 62, 63, 76, 77, 115, 129 Количество теплоты 21, 22, 42—48, 51, 53, 73, 123, 125 Конденсация 29, 60, 65, 82, 127 Константа энтропии 127, 131 Коэффициент полезного действия тепловых машин 39, 43, 44  [c.135]


Как известно, коэффициент полезного действия тепловой машины Карно т) не зависит от природы рабочего тела, а зависит только от температур нагревателя 0 и охладителя 0 . В самом деле, допущение возможности создания второй тепловой машины, которая, работая по циклу Карно с другим рабочим телом, но при тех же температурах нагре-  [c.27]

Таким образом, коэффициент полезного действия тепловой машины, работающей по обратимому циклу Карно, не зависит ни от природы рабочего тела, ни от каки х-л ибо иных условий, а является функцией исключительно температур нагревателя и охладителя.  [c.28]

Коэффициент полезного действия тепловой машины Карно можно выразить также и функцией только одного аргумента (температуры).  [c.28]

Для того чтобы использовать уравнение (14) в целях построения температурной шкалы, необходимо установить вид функции / (0). Как указано выше, коэффициент полезного действия тепловой машины Карно не зависит от выбора рабочего тела, и, следовательно, функция Р д) является универсальной, т. е. одинаковой для всех веществ. Однако о виде этой функции термодинамика не может дать никаких сведений. Поэтому, так же как и в общем случае установления температурной шкалы по любому термометрическому параметру (стр. 23), вид функции / (0) можно выбрать лишь произвольно.  [c.29]

Использование коэффициента полезного действия тепловой машины Карно позволило установить температурную шкалу, независимую от физических свойств какого-либо. ве- щества, но еще не дало возможности осуществить эту шкалу на практике. В самом деле, измерение термодинамической температуры на основе уравнения (20) сводилось бы к из-  [c.33]

Как такового, понятия холод в термодинамике нет. Холод — это просто теплота, температурный уровень которой ниже температуры окружающей среды [32]. Исторически термодинамика возникла из потребностей создания эффективных тепловых машин, т. е. таких устройств, которые служат для превращения теплоты в механическую работу. Первое теоретическое исследование работы тепловых машин было проведено Сади Карно (1796-1832 гг.), доказавшим теоремы, определяющие наибольший коэффициент полезного действия тепловых машин. Эти теоремы позволили впоследствии сформулировать один из основных законов термодинамики — второе начало.  [c.13]

Замкнутый цикл в координатах р — У будет выглядеть как замкнутый контур (рис. 15). В процессе сжатия рабочего тела (адиабата ас) вся затраченная на сжатие работа расходуется на повышение внутренней энергии тела, т. е. его температуры. Подведенное тепло расходуется частично на повышение температуры тела — процесс при постоянном объеме (изохорный) —су, а частично на выполнение внешней работы — процесс уг при постоянном давлении (изобарный). Чем выше наибольшая температура цикла (Т ), тем выше коэффициент полезного действия тепловой машины. В процессе расширения гЬ рабочего тела совершается работа по преодолению сопротивления внешних сил. Процесс Ьа при постоянном объеме соответствует отнятию тепла (За от рабочего тела (отвод тепла к холодильнику ).  [c.57]

Степень использования тепла в идеальном цикле называется термическим коэффициентом полезного действия тепловой машины  [c.57]

Что касается определений, то здесь существует некоторая свобода, так что данную величину можно определять различными способами. Однако, пока не проведено четкое различие между определениями, существует риск возникновения путаницы. Кроме того, не все определения одинаково целесообразны. Как впервые указал Отт [1911, старая формулировка релятивистской термодинамики как раз представляет собой пример такой путаницы, которая может возникнуть, когда работа, совершенная обобщенной силон Р, интерпретируется как механическая работа в термодинамическом процессе. Однако при расчете коэффициента полезного действия тепловой машины, в которой тепловая энергия превращается в кинетическую энергию (автомобиля или поезда) или в потенциальную энергию (при подъеме тяжелых предметов краном), нас интересует не обобщенная сила, а действующая сила и ее работа.  [c.83]


Теперь обратимся вновь к оценке Карно—Клаузиуса — Кельвина для коэффициента полезного действия тепловой машины (XIV. 3-14) и спросим себя, может ли быть достигнута устанавливаемая ею верхняя граница. Допустим с самого начала, что  [c.409]

Степень использования теплоты в термодинамическом цикле (идеальном) называется термическим коэффициентом полезного действия тепловой машины и определяется по формуле  [c.142]

В первом сочинении по термодинамике, опубликованном С. Карно в 1824 г., была поставлена и решена проблема возможного повышения коэффициента полезного действия тепловых двигателей. Относительно к.п.д. тепловых машин Карно установил две теоремы, которые совместно эквивалентны второму началу термодинамики. Докажем эти теоремы, исходя из второго начала.  [c.77]

Мы можем заново сформулировать только что доказанную теорему следующим образом если имеются различные циклические тепловые машины, действующие между температурами и и если некоторые из этих машин обратимые, то коэффициент полезного действия всех обратимых машин одинаков, тогда как необратимые имеют коэффициенты полезного действия, которые не превышают коэффициент полезного действия обратимых машин.  [c.40]

Напишем теперь выражения для коэффициента полезного действия теплового двигателя (Г1 ) и холодильной машины ( х-и)-работающих по обратимому циклу Карно.  [c.129]

Коэффициентом полезного действия г] теплового двигателя называется отношение работы W, производимой машиной за цикл, к количеству теплоты gj, получаемому машиной за этот цикл  [c.77]

Предположим обратное. Пусть имеется другая обратимая машина Карно, работающая в том же интервале температур, но с другим рабочим телом (реальный газ с уравнением состояния Р (р, и, 7) = 0) или другим численным значением отношения оь/оа и по этой причине с другим термическим коэффициентом полезного действия т) о- Поскольку обе машины — с идеальным газом и с произвольным рабочим телом — обратимы, то любая из них может работать как в прямом направлении (тепловой двигатель), так и в обратном (холодильная машина). При работе машин в различных направлениях  [c.52]

Большое распространение электрических систем для механизации технологических процессов обусловливается тем, что они имеют компактную конструкцию и обладают быстротой срабатывания. Эти системы могут передавать энергию на неограниченно большие расстояния, вследствие чего источники питания обычно располагаются вне машины. В таких системах удобно и легко распределяется энергия в нужных направлениях. Кроме того, электрическим системам свойственна легкость превращения электроэнергии в тепловую и другие виды энергии при высоком коэффициенте полезного действия.  [c.27]

Созданные за прошедшие два столетия машины имеют низкий коэффициент полезного действия, например у паровоза он равен 10—15. А это значит, что 85—90<>/о энергии, заключающейся в топливе, теряется бесполезно. Велики непроизводительные затраты и потери энергии и на тепловых электростанциях в процессе преобразования ее на путях от котлов к турбинам и генераторам.  [c.261]

Машина системы проф. А. Н. Шелеста, использующая атмосферное тепло, может быть применена для тепловых электростанций, коэффициент полезного действия которых будет в два раза выше существующих .  [c.194]

В связи с этим предлагаемые расчеты приходится выполнять, задаваясь по данным опыта завода-турбостроителя внутренними коэффициентами полезного действия отдельных стадий процессов расширения и сжатия в машинах и аппаратах тепловой схемы цикла. Используя экономические показатели, можно значительно улучшить заводские экспериментальные данные на основе обобщенного опыта и научно-исследовательских изысканий.  [c.7]

Различают механический и тепловой коэффициенты полезного действия устройств. Механическим коэффициентом полезного действия называется отношение мощности, затраченной на совершение механической работы по преодолению технологических сопротивлений обрабатываемого объекта и на его перемещение в процессе обработки, к мощности, подведенной к входному валу машины  [c.225]

Тепловым коэффициентом полезного действия машины или аппарата, при работе которых происходит также передача тепла (холода) обрабатываемому продукту, называется отношение полезно использованного тепла ко всему теплу, подведенному к нагревательному элементу.  [c.225]

Приведенная выше шкала идеального газа идентична шкале температур Кельвина (термодинамической), определенной из выражения коэффициента полезного действия обратимой тепловой машины.  [c.90]

Коэффициент полезного действия такой идеальной тепловой машины определяется выражением  [c.16]

Согласно (2.4) коэффициент полезного действия идеальной тепловой машины определяется только значениями температур ее нагревателя Тх и холодильника и не зависит от направления прохождения цикла и, что самое важное, не зависит от свойств рабочего тела. Это свойство коэффициента полезного действия цикла Карно навело в середине XIX в. на мысль об использовании законов термодинамики для осуществления эталонной шкалы температур.  [c.17]

Согласно второму началу термодинамики никакая, даже идеальная тепловая машина, работающая без трения и потерь теплоты наружу, не может иметь коэффициента полезного действия, равного единице, так как часть теплоты обязательно должна переходить от источника тепла (нагревателя) к холодильнику. Напомним, что коэффициент полезного действия "п (к. п. д.) — отношение полезной работы ко всей энергии, полученной  [c.151]


Термометрическим параметром при построении такой шкалы является коэффициент полезного действия т] тепловой машины Карно.  [c.29]

Температура, определяемая посредством коэффициента полезного действия обратимой тепловой машины, называется термодинамической, а функция Р(В) — функцией Карно.  [c.29]

Исторически термодинамика возникла из потребностей теплотехники. Развитие производительных сил стимулиров.ало ее создание. Широкое применение в начале XIX в. паровой машины поставило перед наукой задачу теоретического изучения работы тепловых машин с целью повышения их коэффициента полезного действия. Это исследование было проведено в 1824 г. в первом сочинении по термодинамике французским физиком и инженером Сади Карно, доказавшим теоремы, определяющие наибольший коэффициент полезного действия тепловых машин. Эти теоремы позволили впоследствии сформулировать один из основных законов термодинамики — второе начало. В 40-х годах XIX в. в результате исследований Майера и Джоуля был установлен механический эквивалент теплоты и на этой основе открыт закон сохранения и превращения энергии, называемый в термодинамике ее первым началом. Энгельс назвал его великим основным законом движения .  [c.9]

Если процесс расширения газа в реальных условиях проводить медленно, то работа при этом процессе будет стремиться к значению работы при равновесном процессе. Как будет показано ниже, найденный теоретически коэффициент полезного действия тепловой машины, совершающей обратимый цикл, будет максимальным. Это теоретическое условие дает возможность сделать все необходимое для того, чтобы при конструировании реальных тепловых двигаталей приблизить их к тепловой машине, совершающей обратимый цикл. Изучение равновесных процессов и процессов, близких к равновесным, составляет основное содержание термодинамического исследования.  [c.53]

Под коэффициентом полезного действия (к. п. д.) машины понимают параметр, при помощи которого оценивается полезный эффект использования энергии в машине. Величина к. п. д. определяется как отношение затраты энергии на преодоление сил полезных сопротивлений за некоторый промежуток времени к общей затрате энергии в машине за тот же промежуток времени. В зависимости от вида преобразуемой или используемой в машине энергии, например механической, электрической, тепловой и др., различают к. п. д. соответственно механический, электрический, термический и др. В этом параграфе ограничимся рассмотрением механического к. п. д., который учитывает затрату энергии только на преодоление сил вредных сопротивлений сил трения звеньев, сопротивления окружающей среды (воздуха, смазывающей жидкости). Величина к. п. д. механизма или машины для периода установившегося движения определяется по равенству  [c.147]

В настоящее время на северных магистральных газопроводах многие КС оборудованы ГПА с газотурбинным приводом типа ГТК-10-4. В тепловой схеме этих ГТУ используют регенератор для подогрева циклового воздуха, который на входе в камеру сгорания имеет температуру 643— 673 К. Жаровые трубы камер сгорания относительно часто выходят из строя, кроме этого, часты случаи разгерметизации воздухоподогревателя и, как следствие, ускоренное загрязнение проточной части осевого компрессора, что снижает его коэффициент полезного действия. Сегодня есть опыт эксплуатации данного типа ГТУ без использования воздухоподогревателей. В отличие от регенеративных турбоагрегатов у машин безрегене-раторного типа цикловой воздух непосредственно после осевого компрессора с температурой 433—473 К поступает, в камеру сгорания без дополнительного подогрева выхлопными газами. При отсутствии в схеме регенераторов уменьшается сопротивление по воздушному и выхлопному трактам. При этих условиях имеется выигрыш в мощности, но происходит некоторое снижение к.п.д. ГТУ.  [c.19]

Согласно второму началу термодинамики никакая, даже идеальная тепловая машина, работающая без трения и потерь теплоты наружу, не может иметь коэффициента полезного действия (КПД), равного единице, так как часть теплоты обязательно должна переходить от иаоч-ника тепла (нагревателя) к холодильнику. Напомним, что коэффициент полезного действия г — отношение полезной работы ко всей энергии, пол ченной системой. Если машина получает от нагревателя количество теплоты 21 и отдает холодильнику количество теплоты то полезная работа не может быть больше, чем разность Q — 22- Следовательно, коэффициент полезного действия будет  [c.187]

Тепловые аккумуляторы — третий вид аккумуляторов, предложенный Ветчинкиным и Уфимцевым,— представляют собой большие цистерны с прочными и хорошо теплоизолированными стенками. В них находится вода, нагреваемая злектроподогревателями до высокой температуры. Тепловая энергия, запасенная в этих цистернах, может использоваться и для отопительных и для энергетических целей снижая давление, превращая воду в пар, можно потом заставлять ее работать в паровых машинах или турбинах. По расчетам авторов предложения, тепловые аккумуляторы могут оказаться в некоторых случаях в 300—500 раз экономичнее, чем электрические той же емкости. Общим недостатком всех этих проектов аккумуляторов является, кроме их громоздкости, необходимости держать в резерве крупные мощности дублирующих двигателей другого типа, которые простаивают во время работы ветродвигателя, и их сравнительно невысокий коэффициент полезного действия. Поднятая в водохранилище вода будет испаряться, не говоря уж о том, что часть энергии потеряется при работе насосной и гидротурбинной установок. Коэффициент полезного действия гидроаккумулятора составляет всего 40—50 процентов, а резервной станции с двигателем внутреннего сгорания, работающим на водороде в качестве горючего, вряд ли превзойдет 35 процентов. Еще ниже будет коэффициент полезного действия станции с паровой машиной или турбиной, не говоря уже о потерях тепла при хранении горячей воды в цистернах— теплоаккумуляторах. Ни одно из рассмотренных устройств при практическом исполнении не сможет, видимо, превратить в электрическую энергию свыше 50 процентов от затраченной.  [c.213]

Порок современной атомной электростанции заключается в том, что мы еще не умеем преобразовывать энергию атомного ядра непосредственно в электрическую. Приходится сначала получать тепло, а затем превращать его в движение теми же дедовскими сио-, собами, которые существуют с момента изобретения паровой машины. Из-за этого невысок и коэффициент полезного действия атомной электростанции. И хотя это является общим дефектом всех тепловых станций, но все-таки досадно, что проблема отъема тепла и из ядер-ного реактора должна решаться громоздкими, технически несовершенными средствами.  [c.8]


Смотреть страницы где упоминается термин Коэффициент полезного действия тепловых машин : [c.6]    [c.252]    [c.275]    [c.594]    [c.6]    [c.45]    [c.116]    [c.305]   
Термодинамика (1969) -- [ c.39 , c.43 , c.44 ]



ПОИСК



ATM полезности

КПД тепловой машины

Коэффициент полезного действия

Коэффициент полезного действия машины

Коэффициент полезного действия тепловых машин цикла Карно

Тепловой коэффициент

Тепловой коэффициент полезного действия

Ц икл коэффициент полезного



© 2025 Mash-xxl.info Реклама на сайте