Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформация при мартенситном превращении дислокационная

МО позволяет получить у стали более высокие прочностные и вязкостно-пластические свойства, чем после обычной закалки и низкого отпуска. Дополнительный положительный эффект при ТМО объясняется предварительным наклепом аустенита во время пластической деформации. Последствия этого наклепа передаются мартенситу в виде дополнительных, возникших при наклепе дислокаций, которые, складываясь с дислокациями, возникающими при последующем мартенситном превращении, создают более плотную (до 10 м ) дислокационную структуру.  [c.117]


Так же, как и высокотемпературная термомеханическая обработка (ВТМО) сталей (см. гл. III), данный способ упрочнения основывается на сохранении в материале такого структурного состояния, которое возникло при пластической деформации в области высоких температур. Однако, в отличие от ВТМО, данный способ не связан с обязательным фазовым превращением (например, мартенситным в случае закаливающихся сталей) и может быть осуществлен на материалах, не претерпевающих фазового перехода при охлаждении (аустенитные стали, некоторые жаропрочные сплавы, чистые металлы и др.). Применяемое в этом случае для сохранения полученного структурного состояния быстрое охлаждение от высоких температур (закалка) предназначается для предотвращения развития рекристаллизации в наклепанном материале через зарождение и рост новых зерен [70], а не для фиксации полученной дислокационной структуры в новой фазе.  [c.44]

Один из вероятных механизмов образования мартенситного зародыша в аустените, предложенный А. С. Франком [26—28, 6] с позиций теории дислокаций, предусматривает две следующие одна за другой деформации решетки исходной фазы. Первая представляет собой однородный сдвиг в плоскости габитуса (111), который в первом приближении можно рассматривать как следствие движения линейной дислокации (длина последней может достигать 10 —10 параметров кристаллической решетки). Благодаря этому первичному сдвигу образуется превращенная поверхность раздела значительной ширины и длины. Вторую неоднородную деформацию он рассматривает как результат движения рядов винтовых дислокаций по превращенной поверхности раздела, которые расположены в одной из шести пар плоскостей (011). Каждый дислокационный блок скольжения этих шести плоскостей смещает соседний на одно межатомное расстояние. В пределах каждого блока сдвиг плоскостей происходит на одну шестую часть расстояния и является однородным, а общий вектор Бюргерса этого вторичного сдвига в пределах блока равен нулю.  [c.18]

Необходимо также иметь в виду особую роль дислокаций как источников деформации, наводящей ЭПФ [23]. Поля напряжений от дислокационной субструктуры обычно имеют преимущественную ориентировку и в силу этого оказывают ориентирующее влияние на мартенситное превращение. А поскольку дислокации и их построения наследуются в цикле прямое—обратное мартенситное превращение , то ориентированное мартенситное превращение и последующее восстановление формы будут наблюдаться при термоциклировании через температурный интервал мартенситных превращений, т. е. реализуется ОЭПФ.  [c.376]


Изучение дислокационных структур. Исследуют структуры, возникающие в металлах и сплавах при холодной и горячей пластической деформации, в том числе при термомеханической обработке, ползучести, полигониза-ции и рекристаллизации, при облучении быстрыми частицами и др. Можно определять плотность дислокаций (в интервале от 10 до, 10 1 СМ ), изучать особенности формирования дислокационных структур в сплавах с различной энергией дефектов упаковки в зависимости от температуры и скорости деформации и уровня приложенного напряжения (характер распределения дислокаций в материале, образование дислокационных конфигураций и пр.). Существуют специальные приемы исследования сложных дислокационных структур (с плотностью дислокаций >10 см 2), возникающих при сильной пластической деформации или в результате мартенситного превращения [7].  [c.60]

Возникающая при пластической деформации сплавов на основе железа дислокационная структура аустенита изучалась главным образом с точки зрения ее влияния на развитие мартенситного превращения. Работы, устанавливающие связь между тонкой структурой деформации и уровнем механических свойств железомарганцевых сплавов, отсутствуют. В чем же причина такого различного поведения сплавов, имеющих одинаковый фазовый состав до деформации, под влиянием деформации Прежде всего была исследована тонкая структура в исходном состоянии и после деформации тех сплавов, где наблюдается резкое изменение свойств пластичности (сплавы Г17 и Г29 высокой чистоты), прочности (сплав Г24 высокой чистоты) и сопоставлены между собой сплавы двух уровней чистоты выплавки, расположенные на границе (e+v)- и 7-06-ластей (Г29 высокой чистоты и Г24 — промышленной).  [c.168]

Легирующие элементы оказывают влияние на электронную и дислокационную структуру металла. Замещая атомы в рещетке основы, они создают барьеры ближнего действия на пути движущихся дислокаций. От легирования зависят характер и величина межатомного взаимодействия в сплаве, что влияет на подвижность дислокаций. Так, при легировании может увеличиваться плотность дислокаций, вызванная изменением энергии дефектов упаковки (см. 1.5.3), меняется время релаксации вакансий и, как следствие, их избыточная концентрация. Значения констант диффузии и упругости, условия протекания фазовых превращений и в конечном итоге прочность твердого раствора, безусловно, связаны с легированием. Часто легирование сопровождается повьппением сопротивления твердого раствора пластической деформации, поскольку при его образовании более вероятным является множественное скольжение дислокаций по нескольким плоскостям вместо единичного. Так, легирование железа марганцем способствует образованию мартенситной структуры марганцевого феррита, повышению плотности дислокаций и.  [c.147]

Вопрос о механизме упрочнения аустенита при мартенситных у - а у превращениях до сих пор еще нельзя считать окончательно выясненным. Известно, что упрочнение металлов и сплавов при той или иной обработке зависит от плотности дислокаций, характера их распределения и состояния тонкой структуры кристаллической решетки - величины фрагментов и блоков, угла их разориентировки [22], Эти характеристики в известной мере связаны между собой, так как границы блоков и фрагментов имеют дислокационную природу. Чем вьш1е дисперсность и разориенташя элементов тонкой структуры, чем больше в них плотность дислокаций, тем сильнее сопротивление решетки пластической деформации, тем выше прочность.  [c.14]


Смотреть страницы где упоминается термин Деформация при мартенситном превращении дислокационная : [c.373]    [c.125]    [c.146]    [c.173]   
Физическое металловедение Вып II (1968) -- [ c.317 ]



ПОИСК



Деформация при мартенситном превращении

Превращение

Превращение мартенситное



© 2025 Mash-xxl.info Реклама на сайте